
 

 

Kazimierz Twardowski's conception of imagination. The 

early-analytical example and contemporary contexts. 

Rafał Kur1 

Abstract. A tribute to the early-analytical provenience of 

reflections on the phenomenon of the imagination is not only a 

historical reference. In the absence of a consensus in current 

theories of imagination, referring to Twardowski can be 

philosophically refreshing and methodologically inspiring. 

What's more, it seems that without establishing at least an overall 

topology of this mental phenomenon, we will not create a formal 

structure, necessary for logical machine inferences, which would 

also deal with other issues such as the interpretation of emotions. 

The problem is not trivial, because the mechanism of imagination 

is very complex. And that's what Twardowski noticed when 

proposing a comprehensive (interdisciplinary) approach, so 

similar at times to some of the current existing proposals.12 

1 INTRODUCTION 

"Images and concepts" by Kazimierz Twardowski [22] appeared 

in print in 1898 and is one of the first examples of proving mental 

representations using analytic concepts. Despite passing of time, 

it is puzzling to see a substantial convergence and validity 

between current thesis and Twardowski's. Perhaps this is not a 

coincidence. Twardowski was not only a philosopher, but also a 

psychologist, with both a descriptive and an empirical approach. 

His interdisciplinary approach resembled that of a modern 

cognitive scientist even though he did not have the experimental 

facilities of modern-day laboratories.  

The following article is, on one hand, a tribute to Twardowski and 

his achievements in analytical philosophy in the context of the 

contemporary understanding of the imagination, and on the other, 

will highlight efficiency of methods of proof chosen by 

appropriate methodology. 

What in the context of the contemporary multitude, often mutually 

exclusive scientific explanations, has an original meaning, and 

perhaps partly, is it due to an imprecisely defined problem? I am 

not suggesting an optimistic alternative. I only mark possibilities 

of approaching this subject while pointing out methodological 

assumptions in the analytical provenance developed at the Lviv-

Warsaw School. 

2 TWARDOWSKI’S ACHIEVEMENTS  

Twardowski's he concept of imagination is above all astonishing 

by its timeliness which has motivated its recall and 

reinterpretation in this article. Even more so, as is the case of the 

contemporary lack of consensus on the interpretation of the 

phenomenon of imagination which additionally makes the 
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research quite refreshing to present and because the theories of the 

imagination are treated as exemplifications of mental 

representations. Moreover, research disputes around the issue of 

imagination reveal a broader dispute about the mechanisms of 

formation of representation. This is important, because in the 

current various existing interpretations analytic typologies can 

help in ordering the methodological levels of the conglomerate of 

meanings of representation. Contemporary discussions offer 

detailed mechanistic solutions, which has additionally 

differentiated the explanations of the issue and even invited 

arguments for the non existence of representation (anti-

representationalism). However, the complete exclusion of 

representation from cognition in humans (and some animals), 

would imply the lack of connection of the mental with the external 

world. Morover, recently the term of representation is widely 

using in many theories, from humanities, until exact sciences. 

Therefore, this work supports the existence and the possibility of 

creation of various forms of representation. 

 

The novel way in which Twardowski’s teacher presented the 

nature of the mental representation of objects sparked his interest. 

Brentano moved away from Cartesian dualism in which the mind 

(perceived as thinking or consciousness) was a model reflecting 

reality. Brentano broke down the Kant’s knowing process into 

representations and judgements. He introduced intentional acts 

which produce content, while content depicts objects outside of 

consciousness. Thus, he developed the notion the linkage of a 

subject with the world, and at the same time initiated a new field 

for speculation over consciousness. Consequently, Twardowski’s 

original contribution was to distinguish the subject and its 

representation, thanks to the psychological development of the 

theory of intentionality and emphasis on the causative activity of 

the subject (activities/outcomes). These types of arguments were 

also further developed by his students at the Lviv-Warsaw School. 

On the other hand, phenomenology (Husserl and students) 

intensively addressed the philosophical approach to 

consciousness and intentionality. Mental representations (before 

known as mental imagery) have gained a new, deeper meaning, 

whose status by examining various exemplifications, is still a 

subject of dispute. Twardowski initiated this approach in his 

work, Zur Lehre vom Inhalt und Gegenstand der Vorstellungen. 

Eine psychologische Untersuchung, “On the Content and Object 

of Presentations. A psychological examination” (1894, [24]), 

where he differentiated Brentan's transcendent from the immanent 

object of intention. The former denotes an object that is 

independent of our consciousness, for example a visible object. 

The latter views the object as a conscious product of this act, more 

precisely its content. This distinction is important, because 
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content deepens the meaning of representation, for example when 

imagining an object no longer being perceived or an abstract form. 

Therefore, the distinction between "imagination" and "concept" 

was, a natural consequence of a refined understanding of content 

produced during visual (perceptions, representations) and non-

visual (concepts, judgments) presentations. 

3 THE IMAGERY DEBATE 

Twardowski's voice in the discussion on the nature of concepts 

resulted primarily from attempts to understand objects which we 

cannot imagine, and which can only be replaced by concepts 

(infinity, quant, round square, God, etc.). For this reason, 

Twardowski needed to organise his theories and make a critical 

selection, then create a general and compact theory analysing 

types of concepts. A general enough theory to cover all cases of 

conceiving an object with the help of concepts. Accordingly, he 

tried to determine limits of "the power of the imagination" beyond 

which concepts including abstract (rational) objects can exist. The 

analysis of the established boundaries led Twardowski to an 

interdisciplinary theory of representation emphasizing the 

interdependence of imagination and concept, a synthesis. 

However, "the concept is a representation of an object that 

consists of a similar imagined object and one or several imagined 

judgments relating to the imagined object” [22]. 

 

The research topics from the Lviv-Warsaw School resemble 

contemporary interdisciplinary research on mental phenomena. 

The certainty of some diagnoses of researchers from the School 

results mainly from the selection of specific methods of exact and 

natural sciences. It was also a good base for the then emerging 

psychology that inherited the philosophical issues/problems of the 

mind, developing and applying its methods, both theoretical 

(descriptive) and experimental (at the level of physiology). 

Twardowski's attempt to understand mental representations 

interestingly turned into a contemporary psychophysical dispute 

(the body-mind problem). Especially in cognitive psychology, 

this subject gained special significance due to empirical 

verifications. Described as the imagery debate, it concerns, in fact, 

the problem of representation and more precisely the mechanisms 

of coding information in the human cognitive system. As a result 

of this dispute, since the 1970s it has been cited by both 

philosophers of the mind and cognitivists. The best-known 

proposals oscillate around two major competing concepts. 

Admittedly, the two major competing concepts contain numerous 

complementary elements, accrued over decades of discussion and 

supported by advanced experiments. On the one hand, we have 

the image concept (i.e. analog, visual) postulating that mental 

images resemble images of real objects, perceived objects and 

concepts referring to them are represented in the mind in the same 

form (i.e. specific size and spatial position). These properties are 

captured directly in the image and not represented in a symbolic 

(semantic) manner. Representatives: Kosslyn [10, 11, 12]; 

Shepard, Metzler [21]; Francuz [3]. On the other hand, the 

proposition which indicates that mental representations are a 

collection of judgments (i.e. propositional) about the relations 

between symbols, encoded in the memory as tacit knowledge. 

Representatives: Pylyshyn [17, 18, 19, 20], Anderson and Bower 

[2]. 

 

The main problem of the image approach lies in the unsatisfactory 

explanation of the abstract concept representation. Twardowski 

noticed this a hundred years earlier, but without sufficient tools, 

he consciously abandoned further analyses of this problem. He 

proposed, however, and presented possibilities of resolving this 

problem through sets of claims, beliefs, or judgments. Thus, his 

approach resembles that of Pylyshyn, the main opponent of the 

visual nature of representation. Twardowski draws attention, for 

instance, to the possibility of a double grammatical construction 

in which the word "think" occurs. One could think about a certain 

event (imagining - using images and concepts) and think that an 

event was inevitable (expression of beliefs). Twardowski did not 

think that the representation itself is but a judgment. In order for 

the judgment form, it must include a mental act of recognition or 

rejection, confirmation/sanction or denial, also containing an 

emotional (internal sensations, physiological and behavioural 

component) correlations  [4, 14, 15]. 

4 COMMON PARALLELS 

It seems that imagery debate is nothing more than an expansion 

of Twardowski dilemma through experiments. The indirect 

placement of the Polish philosopher in this discussion results from 

the surprising accuracy of his analytic deduction, that led him to 

rationally suspend certain issues and assume an intermediate 

position. Due to the role of Twardowski’s judgments, one could 

straightaway assume similarity with Pylyshyn's approach, but it 

should be noted that Twardowski attributed judgments a 

complementary role, rather than a primary one. Reinterpreting 

Twardowski in the context of contemporary theories of the 

imagination is also an indication of qualities of the 

epistemological tradition from which contemporary reductionist 

theories seem to be moving away. For instance, the unilateral view 

that perception is a cognitive act in relation to physical objects 

narrows the understanding of perception. As perception’s building 

blocks (structure) consist not only of external sensations, but also 

of internal, resulting from e.g. fun, pain, sadness, love, etc. 

Twardowski, as the successor of Brentanism, and a witness of 

expanding behaviorism, did not accept only using "hard methods" 

in the complex system that is cognition, which currently reflects 

eliminationism (Particia and Paul Churchland). 

Mechanistic (computational) interpretations of the representation 

are also not completely satisfactory. An interesting example is a 

recently created model of the Neuronal Turing Machine (NTM), 

which made us realize that the neurodynamics of the brain cannot 

be replicated merely by operationalizing data, because the human 

mind is more than a just a “Turing Machine”. 

 

In the absence of unanimity (unifying theory), nothing is more 

necessary than a sensible methodology and a moderate approach. 

Perhaps that is why, in cognitive psychology, Alan Paivio's dual 

coding theory is quite often invoked (cited). Though, in the wider 

cognitive view, it seems that the closest to Twardowski were the 

compositional and naturalistic concepts of the mind of Jerry 

Fodor. 

 

Allan Paivio [16, 17] assumes the existence of two separate 

information processing systems. The non-verbal system 

responsible for coding information in the form of multimodal 



 

 

patterns of activation of the network of neurons associated with 

perception, which are then used to simulate the perception of 

objects. And the language system responsible for coding 

information in the form of relations between symbols of different 

strengths of association organized hierarchically as nodes in the 

semantic network, which can connect with each other and with 

objects represented in the non-verbal system. From the 

Twardowski point of view, an interesting fact is that knowledge 

coded in the language system is contained in the network of 

relations between symbols and not in the symbols themselves. A 

single node of such a network can often be identified with a single 

category, associated on one side with the corresponding word, and 

on the other with a certain class of objects encoded in a non-verbal 

(image) system. 

 

Behavioral experiments conducted by Paivio indicate that 

Twardowski assumption were correct. Due to some conclusions 

Canadian psychologist, for example in the case of too much of a 

categorical separation of coding content of specific concepts in 

both systems, the content of abstract concepts only in the language 

system, to counteract this, Twardowski's thesis, for example, on 

the fluidity between abstract and specific concepts becomes very 

useful. The dual coding theory does not contradict the results of 

experiments that support opposition positions, it also seems to be 

in line with the current state of neurobiological knowledge. 

 

Why did Twardowski consider images and concepts to be the 

most important form of representation and treat them as 

complementary? In the light of today's research, can you keep his 

proposal? Probably yes. The achievements of cognitive science 

bring us closer to different proposals. Contemporary experiments 

in cognitive psychology do not definitively admit any of the 

parties to the dispute, although it is currently noticeable that the 

"visual" approach is more popular. Using Twardowski’s work as 

inspiration, I would argue that the complex content (neuro-

dynamic format of information) of presentations requires an 

interdisciplinary approach. Moreover, the mereological nature of 

Twardowski's assertions is also a methodological (formal) clue to 

the dynamic and diverse representational resources [1]. 

 

On the other hand, the inclusion of other correlations (e.g. 

emotional) emphasizes the proto-cognitive character of 

Twardowski's considerations. Twardowski wrote: "If the idea is 

not a renewed insight in general, nor a simple recreation of 

sensations, there is nothing else but to seek them in the very 

synthesis of sensations (...). As a synthesis of sensations, an idea 

is based on sensations - whether immediate or refreshed - though 

it is not a simple recreation of them; it can therefore be based on 

any impressions, as long as a proper whole can be made of them. 

(...) Imagination, therefore, is to a sensation, like the whole to a 

part. One could ask what kind of synthesis is the one in which the 

sensations are arranged to create the images/imagination. But 

psychology has not been able to and probably never will be able 

to formulate an answer to this question" [22]. 

 

The characteristic arguments concerning the synthesis and 

interdependence of elements of the representations presented by 

Twardowski resemble proposals of Jerry Fodor [5, 6, 7, 8, 9], who 

postulates that the types of mental representations are of a 

compositional nature, dividing them into two basic types, i.e. 

linguistic (conceptualized) and iconic (conceptualized). In the 

case of iconic or "visual", these need empirical evidence. 

Analyzing the differences and similarities between linguistic and 

iconic representations, Fodor arrives to similar conclusions as 

Twardowski's did a century ago. For example, the lack of a logical 

form of iconic representation, a characteristic relationship of parts 

to the whole that complement each other at a general level. Fodor's 

naturalistic idea derived from the criticism of the inferential 

position of Frege, who unnecessarily - according to Fodor - 

associated methods of presenting objects only with the meaning 

of language expressions. Fodor from the 1960s, while working 

with Noam Chomski, he began opposing behaviorism, when it 

turned out that internal representations could explain many more 

properties of cognition - from the laws of perception to the 

cognitive foundations of logic and language. The content of the 

representation is a complex creation connected with the cognitive 

system with many causal links, including semantic properties. 

Associations of this type according to Fodor explain the 

productivity and regularity of our thoughts. The reference-based 

semantics makes it possible to refine (individualize) concepts. 

This type of inference is similar to Twardowski's method, whose 

conceptual apparatus seems suitable - after making some 

modifications - to the role of a peacemaker between reductionistic 

neuroscience and speculative philosophy of the mind. 

Additionally, Fodor argues that the computational nature of 

mental processes brings the philosophy of mind closer to 

cognitive science based on IT methods. Interestingly, Fodor has 

no commentary on the analysis of the factors defining concepts. 

He admits to lack some element in the theory representing the 

mind and suggests only a conceptual framework for a future 

theory. 

5  CONCLUSION 

It was obvious to Twardowski that the mind, the subject of the 

study of philosophers and psychologists, is associated with the 

biological brain. The problem he could not solve, and which, in 

fact, exists to this day, was the lack of obvious details of the 

relationship. This psychophysical dilemma Twardowski tried to 

explain, by introducing the concept of a function. "The mental 

activity is reliably a function of the brain in the first sense of the 

word, because certain changes taking place in the brain involve 

changes in mental activity. One can not call the atoll of the mental 

activity the function of the brain in the second of the meanings 

quoted. There is no evidence to suggest that mental activity is 

carried out completely and exclusively by the brain" [25]. Mental 

activities are not isolated from the brain, nor are they detached 

from external reality. Twardowski, through the analysis of various 

activities emphasizes how entangled we are with the world, and 

thus cognition is embodied. However, he could not study the 

source of the psychophysical. Nowadays, even neuroscientists are 

reserved in explaining these issues; numerous experiments 

usually further complicate the things. This is why cognitive 

science is developing so dynamically. On the one hand, it makes 

use of evidence from cognitive psychology, and on the other, 

extensively uses the theoretical assumptions of analytical 

philosophy of the mind. 

 

Understanding the relationships between the neurobiological 

(physical) processes of the brain and mental reactions is still the 

body-mind problem. Among various approaches (reductionism, 

epiphenomenalism, dualism, etc.) Twardowski's proposals in light 



 

 

of contemporary research are an opportunity to recall some 

concepts of the Lviv-Warsaw School, including the moderate and 

interdisciplinary (also known as comprehensive, mixed, cross-

domain) methodological proposals in the study of mental 

representations, as a reaction to the overly reductionist trends in 

cognitive science. 
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Glanville’s ‘Black Box’: what can an Observer know?
Lance Nizami1 

Abstract. This paper concerns the ‘Black Box’. It is not the 
engineer’s ‘black box’ that can be opened to reveal its 
mechanism, but rather, one whose operations are inferred 
through input from (and output to) a companion ‘observer’. We 
are observers ourselves, and we attempt to understand minds 
through interaction with their host organisms. To this end, 
Ranulph Glanville, Professor of Design, followed the 
cyberneticist W. Ross Ashby in elaborating the Black Box. The 
Black Box and its observer together form a system having 
different properties than either component alone, making it a 
‘greater’ Black Box to any further-external observer. However, 
Glanville offers conflicting accounts of how ‘far’ into this 
‘greater’ box a further-external observer can probe. At first 
(1982), the further-external observer interacts directly with the 
core Black Box while ignoring that Box’s immediate observer. 
But in later accounts, the greater Black Box is unitary. Glanville 
does not explain this discrepancy. Nonetheless, a firm resolution 
is crucial to understanding ‘Black Boxes’, so one is offered here. 
It uses von Foerster’s ‘machines’, abstract entities having 
mechanoelectrical bases, just like putative Black Boxes. Von 
Foerster follows Turing, E.F. Moore, and Ashby in recognizing 
archetype machines that he calls ‘Trivial’ (predictable) and 
‘Non-Trivial’ (non-predictable). Indeed, early-on Glanville treats 
the core Black Box and its observer as Trivial Machines, that 
gradually ‘whiten’ (illuminate) each other though input and 
output, becoming ‘white boxes’. Later, however, Glanville treats 
them as Non-Trivial Machines, that never fully ‘whiten’. Non-
Trivial Machines are the only true Black Boxes. But Non-Trivial 
Machines can be concatenated from Trivial Machines. Hence, 
the utter core of any ‘greater’ Black Box (a Non-Trivial 
Machine) may involve two (or more) White Boxes (Trivial 
Machines). White Boxes may be the ultimate source of the mind. 
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1 INTRODUCTION 
One dream of Artificial Intelligence is to exactly mimic natural 
intelligence. Natural intelligence is examined by observing the 
behaviors that imply a mind (unlike mere physiological reflexes). 
Minds presumably exist within animals having recognizable 
brains. (Whether other species have minds will not be debated.) 

Of course, behavior can be difficult to quantify, especially 
when experimental-research subjects cannot ‘report’. An 
example of reporting is the confirming of particular sensations 
evoked by stimuli [1-3]. In animals, primitive reporting (Yes/No, 
Left/Right, etc.) can be painstakingly conditioned. But 
conditioning may not be feasible (or ethical) for human infants. 
Nonetheless, we desire to establish infants’ sensory abilities, in 
order to detect defects [1-3]. But, by-and-large, the animal or the 
infant is a ‘Black Box’ to the observer of behavior [1-3]. The 
reason for the capital B’s will soon be explained. 

Sensations are a feature of the mind. Here, the attempts to 
understand a mind through interaction with its host organism are 
placed in relation to the notions of the Black Box and its 

‘observer’ as proselytized by Ranulph Glanville [4-8]. Glanville 
was a Professor of Design and a champion of Second-Order 
Cybernetics. Glanville notes [6] that much of his discourse on 
the Black Box originates in the writings of W. Ross Ashby. 
Hence, we begin with Ashby. Ashby devotes a chapter to the 
Black Box in his book An Introduction to Cybernetics (1956), a 
book cited over 11,000 times (GoogleScholar). (For a brief 
summary of Ashby’s importance to science, see [9].) Ashby’s 
1961 edition is more readily available, and is cited here [10]. 

2 THE BLACK BOX AND ITS OBSERVER  
The ‘black box’ of an engineer or a physicist is a physical object 
that can be opened, letting its operation be comprehended. If un-
openable, however, this ‘machine’ becomes a Black Box [10], 
understood only through inputs given by, and outputs noted by, 
an observer [10]. Indeed, the input/output cycle may never reveal 
the Black Box’s mechanism; a mechanical basis, for example, 
may be indistinguishable from an electrical one [10]. Ashby [10] 
gives examples, noting that we can “Cover the central parts of 
the mechanism and the two machines are indistinguishable 
throughout an infinite number of tests applied. Machines can 
thus show the profoundest similarities in behavior while being, 
from other points of view, utterly dissimilar” ([10], p. 96). 

Following Ashby, we might imagine machines that consist of 
both mechanical and electrical components, mechanoelectrical 
‘systems’ whose actual mechanisms are indistinguishable, one 
from another, through input and output. As such, the 
mechanisms become irrelevant. Glanville takes this logic to its 
limit: “You cannot see inside the Black Box (there is nothing to 
see: there is nothing there—it is an explanatory principle)” ([5], 
p. 2; italics added). That is, “Our Black Box is not a physical 
object, but a concept … It has no substance, and so can neither 
be opened, nor does it have an inside” ([8], p. 154). Even so, 
Glanville states that it has a mechanism [4, 6-8]. 

Glanville’s Black Box may sound suspiciously like a mind. 
After all, no-one can directly observe their own mind, or 
anybody/anything else’s; “mind” is an explanatory principle for 
what we call ‘behavior’. Glanville’s work [4-8] therefore 
deserves further scrutiny. Unfortunately, his principal exposition 
[4] requires clarification, as will be explained. Glanville later 
attempts clarification [5-8], but falls short. The present paper 
provides the missing details. Provocative insights emerge. 

3 ‘WHITENING’ THE BLACK BOX 
Let us clarify Glanville’s notion of the Black Box as a 
“phenomenon” or “principle” or “concept”. First, let us assume 
that the Black Box is spatially located. This forces another 
assumption, namely, that wherever the location, there must be a 
mechanoelectrical system that is the basis for – that produces – 
the Black Box. For example, the brain with its extended network 
of neurons and blood vessels indisputably produces the mind, 
whose existence is evident through non-reflexive behavior. 



(‘Reflexive’ behavior would include, for example, the jerk of the 
lower leg when the knee is tapped by a physician, or the 
tendency of some single-celled organisms to move towards 
light.). The mind is not independent of its host body; likewise, the 
Black Box is not independent of its mechanoelectrical basis. 

Figure 1 schematizes the Black Box and its observer. The 
observer makes inferences about the Black Box by presenting 
stimuli, the inputs, and recording the Box’s consequent 
responses, the outputs [4-8, 10]. According to Glanville ([4], p. 
1), the observer thereby obtains a “functional description” of the 
Black Box: “The ‘functional description’ … describes how the 
observer understands the action of the Black Box” ([5], p. 2). 
That is, the Black Box is ‘whitened’ [4]. Practical examples of 
‘whitening’ through input/output might include an Experimental 
Psychologist studying the behavior of a human or an animal, or a 
Physiologist making a noninvasive electrical recording [1, 11]. 

4 OBSERVER AS BLACK BOX, BLACK BOX 
AS OBSERVER 
‘Whitening’ of the Black Box becomes more intriguing yet. 
Glanville [4, 5, 7, 8] declares that the observer can be considered 
a Black Box, from the Black-Box’s viewpoint. Consider that an 
output of the Black Box is an input to its observer; likewise, an 
input to the Black Box is an output from the observer. Hence, 
“we come to assume that the Black Box also makes a functional 
description of its interaction with the observer” ([5], p. 2). The 
Black Box ‘whitens’ its observer, by acting as an observer [4]. 

Consider the following examples. Imagine the mind as a 
Black Box, probed through input and output. We call this action 
Psychiatry or Psychology. But each Psychiatrist or Psychologist 
has their own mind, a Black Box. Those particular Black Boxes 
regulate everything that those observers say and do; the 
observers are therefore now Black Boxes. And indeed, Moore 
[12] and Ashby [10] both imply that a Psychiatrist and a patient 
are interacting Black Boxes. When the Psychiatrist (or the 
Psychologist) probes the patient (or the research subject), each 
participant (if awake and aware) is an observer, who regards the 
other as a Black Box. Such interaction implies a system. 

5 BLACK BOX + OBSERVER = ‘SYSTEM’: 
INSIDE EVERY WHITE BOX THERE ARE 
TWO BLACK BOXES TRYING TO GET OUT 
Ashby analyzes experiments as follows: “By thus acting on the 
Box, and by allowing the Box to affect him and his recording 
apparatus, the experimenter is coupling himself to the Box, so 
that the two together form a system with feedback” ([10], p. 87; 
italics added). That is, experimenter and Box each “feed back” to 
the other, each becoming both observer and Black Box. A 
BlackBox/observer system has different properties than either the 
Black Box or the observer alone, or so Glanville implies: “The 
Black Box and the observer act together to constitute a (new) 
whole” ([7], p. 1; see [8], p. 161). This he calls the white box [4]. 

Figure 2 schematizes the ‘white box’. If now the observer 
himself is taken to be a Black Box, then the title of Glanville’s 
paper of 1982 [4] becomes comprehensible: “Inside every White 
Box there are two Black Boxes trying to get out”. According to 
Glanville [4, 7, 8] the White Box, as a system, is nonetheless 
‘black’ to any further-external observer. 
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Figure 1. (After [4]) The Glanville notion of the Black 
Box and its observer. The observer sends inputs to the 
Box, and receives outputs from it. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
                                         
 

 
 
  
 
 
 

The BlackBox/observer system, 
‘whitened’ on the inside 
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Figure 2. (After [4]) The Black Box and its observer 
mutually ‘whiten’ through interaction, making a 
‘system’ (dashed boundary) that is ‘whitened’ inside. 

6 HOW WOULD A FURTHER-EXTERNAL 
OBSERVER INTERACT WITH THE SYSTEM? 
We have assumed that the Black Box is the product of a 
mechanism. The pictured boundary of any Black Box (and any 
consequent White Box) is operational, not physical. Where, 
therefore, can inputs from a further-external observer go within 
the BlackBox/observer system? Do they go directly to the core 
Black Box? Or to the [original] observer? Or, somehow, to both? 
The answer presumably tells us where consequent outputs 
originate from too. Figures 3 and 4 illustrate two possibilities. 

Figure 3 illustrates the further-external observer’s inputs as 
going straight through the boundary of the BlackBox/observer 
system, right up to the edge of the core Black Box itself, without 
interacting with the core Black Box’s observer. The latter 
persona is ignored, as if the further-external observer recognizes 
his presence and behavior. Now consider the contrary situation. 
Figure 4 (after [8], p. 164) shows the core BlackBox/observer 
system not being penetrated by the input-and-output pathways to 



the further-external observer. Indeed, Glanville [7] implies that 
in “a recursion of Black Boxes (and observers)”, none of the 
observers know of each other’s existence. But Glanville [8] later 
fails to be definitive about this. Indeed, he provides no rationale 
for the discrepancy between his approach of 1982 [4] and his 
approach of 2009 [7, 8]. And he can no longer provide one [13]. 
Consequently, the present author attempts the task. Important 
insights emerge, but first, some background is needed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                         
 

 
 
  
 
 
 

The BlackBox/observer system, 
‘black’ from the outside 

Further-External Observer  
 

Figure 3. (After [4]) The core BlackBox/observer 
system as a Black Box which is penetrable by the 
input/output paths from/to a further-external observer. 

7 INTERIM (1): ‘TRIVIAL’ MACHINES 
Consider the machine, introduced in Section 2 as a 
mechanoelectrical device. Henceforth, ‘machine’ will be used in 
a different way. As von Foerster ([14], p. 207) states, “The term 
‘machine’ in this context refers to well-defined functional 
properties of an abstract entity rather than to an assembly of 
cogwheels, buttons and levers, although such assemblies may 
represent embodiments of these abstract functional entities [i.e., 
the ‘machines’]” (italics added). By this definition, an abstract 
entity that is a product of a mechanoelectrical basis – i.e., an 
abstract entity such as the Glanville Black Box – is a ‘machine’. 

Von Foerster recognizes two types of machines: Trivial, and 
Non-Trivial. He explains: “A trivial machine is characterized by 
a one-to-one relationship between its ‘input’ (stimulus, cause) 
and its ‘output’ (response, effect). This invariant relationship is 
‘the machine’. Since this relationship is determined once and for 
all, this is a deterministic system; and since an output once 
observed for a given input will be the same for the same input 
given later, this is also a predictable system” ([14], p. 208; italics 
added). Algebra-wise, von Foerster explains that for input x and 
output y, “a y once observed for a given x will be the same for 
the same x given later” ([15], p. 9). That is, “one simply has to 

record for each given x the corresponding y. This record is then 
‘the machine’” ([15], p. 10). 

Von Foerster ([15], p. 10) provides an example of a Trivial 
Machine, in the form of a table which assigns an output y to each 
of four inputs x. The x’s are the letters A, U, S, and T, and the 
respective outputs y are 0, 1, 1, and 0. Von Foerster ([14], p. 
208) notes that “All machines [that] we construct and buy are, 
hopefully, trivial machines”, that is, predictable ones. 
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The BlackBox/observer system, 
‘black’ from the outside 

 
 
Figure 4. (After [8]) Compare to Fig. 3. The core 
BlackBox/observer system as a Black Box which is 
not penetrable by the input/output paths from/to a 
further-external observer. 

8 INTERIM (2): INTERNAL ‘STATES’ 
Of course, in reality, not all machines are Trivial. A physical 
machine, as Ashby [10] points out, can have internal conditions 
or configurations, which Ashby calls ‘states’. We will assume 
that so, too, can the products of physical machines, namely, 
conceptual machines such as Black Boxes. Ashby notes “that 
certain states of the Box cannot be returned to at will”, which he 
declares “is very common in practice. Such states will be called 
inaccessible” (all from [10], p. 92; original boldface). Ashby 
continues: “Essentially the same phenomenon occurs when 
experiments are conducted on an organism that learns; for as 
time goes on it leaves its ‘unsophisticated’ initial state, and no 
simple manipulation can get it back to this state” ([10], p. 92; 
italics added). Learning presumably means changes in abilities 
and knowledge, that are reflected in changes of behavior. 

Here, mind is machine is Black Box. Learning is presumably 
concurrent with changes in the mind’s mechanoelectrical basis, 
the brain; changes in brain-states manifest as changes in mind-
states. Thanks to learning, our response to a stimulus can differ 
from our previous response, and in unexpected ways. For a 
stimulus that is a question, for example, von Foerster ([14], p. 
311) notes that a child can offer a correct [carefully trained] 



answer, or a correct but unexpected answer, or an answer that is 
intentionally capricious. Minds are not Trivial Machines. 

We must therefore ask whether the observer of any Black Box 
can give input, and record output, without changing the Box’s 
possible output to the next input. That is, can the Black Box be 
observed without being perturbed? Likewise, can a Black Box’s 
output be observed by, but not perturb, the observer? 

9 INTERIM (3): SEQUENTIAL MACHINES 
There are conceivably perturbable ‘machines’. Such devices 
were envisioned long before Ashby [10]. Indeed, Turing [16] 
conceives of a machine whose input and/or output can change 
the response to the next input. Turing describes the machine only 
in terms of its process. The machine has a finite number of 
internal states, called ‘conditions’ or ‘configurations’. The 
machine accepts an input in the form of a continuous tape, 
divided into equal segments, each containing a symbol or being 
blank. The machine scans one tape segment at a time; the 
scanned symbol (or the blank), along with the machine’s current 
configuration, altogether determine the impending response. 
That response can include erasing a symbol from the tape; or 
printing (or not), on a blank segment of the tape, a symbol 
consisting of a digit (0 or 1) or some other symbol; or shifting 
the tape one segment to the left or one segment to the right [16]. 

Turing’s machine exemplified what came to be known as 
sequential machines. One class of them was described by E.F. 
Moore [12]. He, like Turing, used operational descriptions: “The 
state that the machine will be in at a given time [the ‘current 
state’] depends only on its state at the previous time and the 
previous input symbol. The output symbol at a given time 
depends only on the current state of the machine” ([12], p. 133). 
That is, an input evokes an output, which is nonetheless 
determined only by the present internal state. That state then 
changes to another state, that is determined by the input. 

Moore [12] provides an example of a sequential machine, in 
the form of two tables that relate the inputs, outputs, and internal 
states ([12], p. 134). Let us call the inputs x. Moore’s inputs are 
also the possible outputs, but for the sake of distinction, let us 
call the outputs y. One of Moore’s tables shows the “present 
output” y of the machine, as a function of the “present state”, 
call it z. Let this relation be called y=F(z) and be satisfied by an 
‘Output Generator’. Moore’s second table shows “the present 
state of the machine … as a function of the previous state and the 
previous input” ([12] p. 134). Let us call Moore’s “previous 
state” z

- 1
and the “previous input” x

- 1
. Let us use z′ for the state 

of z which occurs after y is output. Let z
- 1

, z, and z′ be 
determined by the ‘State Generator’ Z, and express Z in terms of 
z rather than z

- 1
. Moore [12] uses four possible internal states, 

called q
1
, q

2
, q

3
, and q

4
, and two possible inputs, x = 0 or x = 

1. All of this notation may seem awkward, but it is consistent 
with the work of von Foerster [14, 15], continued below. 

Table 1 shows a re-arrangement of Moore’s two tables into 
five smaller tables, four of which show z as a function of x

- 1
 for 

the four possible values of z
- 1

(q
1
, q

2
, q

3
, and q

4
), the 

remaining table showing y as a function of z. 
As an example of how the Moore sequential machine works, 

note that z = q
4
could have arisen from z

- 1
= q

3
and x

- 1
= 0 or 1, 

or from z
- 1

= q
1
and x

- 1
= 0. Regardless, an input x = 0 or x = 1 

now evokes the output y = 1, after which x
- 1

= 0 or x
- 1

= 1, 
respectively, and z

- 1
= q

4
, leading to a new internal state z′ = q

2
. 

A subsequent input x = 0 or x = 1 will result in y = 0, and so on. 
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Table 1. Relations in Moore’s example of a sequential 
machine [12]. The rightmost table describes the Output 
Generator; the other four tables describe the State 
Generator, for internal states q

1
, q

2
, q

3
, or q

4
.  

 
 
Note well that, in Moore’s scheme, a particular output can 

result from different internal states; and a particular internal state 
can result from different inputs. Note equally well that Moore’s 
two tables are unchanging. That is, what we presently call the 
State Generator and the Output Generator are deterministic (i.e., 
non-random) and they are predictable, insofar as an outside 
observer supplying input and recording output can gain 
increasing confidence about each Generator’s operating rules. 
Both Generators are Trivial Machines. 

But the concatenation of two Trivial Machines can be non-
trivial, i.e., non-predictable; the whole is more than the sum of 
the parts. This wholism is called ‘emergence’ [1, 17]. How 
would an observer of the sequential machine (not its maker) gain 
the data to fill Moore’s two tables? Moore introduces “a 
somewhat artificial restriction that will be imposed on the action 
of the experimenter. He is not allowed to open up the machine 
and look at the parts to see what they are and how they are 
interconnected” ([12], p. 132). That is, “the machines under 
consideration are always just what are sometimes called ‘black 
boxes’, described in terms of their inputs and outputs, but no 
internal construction information can be gained” ([12], p. 132). 

Moore himself offers no picture of a sequential machine as a 
‘black box’. Hence, let us make one. Figure 5 shows a sequential 
machine involving two Trivial Machines, whose operations 
follow the relations in tables such as Moore’s. Figures 6, 7, and 8 
show the machine’s presumed three-step input/output cycle. 

Sequential machines have broad importance. They are cases of 
what von Foerster [14-15] later calls Non-Trivial Machines. Like 
Moore [12], von Foerster provides an example in the form of 
two tables ([15], p. 11). The tables describe the output y and the 
next state z′ in terms of the input x, but for only two possible 
internal states, the present states z, dubbed I or II. Having two 
states characterizes the simplest Non-Trivial Machine; under 



only one internal state, a particular input would always evoke a 
particular pre-determined, unchanging output, making the 
machine Trivial. Nonetheless, von Foerster’s example inputs and 
outputs were the same as for his Trivial Machine: x = A, U, S, or 
T, and y = 0 or 1. 
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Figure 5. A Moore [12] sequential machine, depicted 
in a style used later by von Foerster [14-15]. The 
boxes and lines and the circle represent mechano-
electrical parts. The lines with arrows represent the 
parts’ operating relations, which need not occur 
simultaneously. The internal state z actively affects the 
Output Generator F, and the State Generator Z from 
which it arose. Z produces a new state z′ after y is 
output by F when F is prompted by the input x. 
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Figure 6. The operation of a Moore sequential 
machine, interpreted as a cycle. In Step 1, the machine 
awaits input while the internal state z actively affects 
the Output Generator F and the State Generator Z. 
 
 

Von Foerster’s data can be re-ordered, to make four new 
tables, two for each of z = I or z = II. Table 2 contains the four 
tables. Two of the tables show y as a function of x, and two of 

the tables show z′ as a function of x. These latter pairs are the 
respective equivalents of the Output Generator and the State 
Generator of Moore’s [12] sequential machine (Fig. 5). Von 
Foerster calls them the Driving Function and the State Function. 
Figure 9 schematizes von Foerster’s Non-Trivial Machine. 
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Figure 7. The imagined Step 2 of the cycle of a Moore 
sequential machine. The input x prompts an output y 
and also affects the State Generator Z. 
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Figure 8. The imagined Step 3 of the cycle of a Moore 
sequential machine. After y is output, the State 
Generator generates z′, which replaces z. 
 
 

Von Foerster’s machine conceivably follows a three-step 
operational cycle like Moore’s (Figs. 6, 7, and 8). But the 
machines in Fig. 5 and Fig. 9 profoundly differ in one detail. To 
Moore [12], the input x has no bearing on the immediate 
resulting output y (Fig. 5), only on its successor by way of the 
internal state. Moore’s y is evoked by x, but is only indirectly a 
function of x by way of the internal state. In contrast, in von 
Foerster’s [14-15] machine (Fig. 9), x directly affects y, and 
indirectly affects the next output by way of the internal state. 



 

z = I  z = II  z = I  z = II 

x y  x y  x z′  x z′ 

A 0  A 1  A I  A I 

U 1  U 0  U I  U II 

S 1  S 0  S II  S I 

T 0  T 1  T II  T II 

 
Table 2. Relations in von Foerster’s example of a Non-
Trivial Machine [15]. The two leftward tables describe 
the Driving Function, and the two rightward tables 
describe the State Function, for internal states I and II. 
 
 

As an example of how the von Foerster Non-Trivial Machine 
works, note that when z = II and an input x = U occurs then the 
output y = 0 is evoked and the internal state changes to z′ = II,   
which coincidentally is the same state as before. 
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Figure 9. (After [15]) Von Foerster’s “Non-Trivial 
Machine”. It involves two Trivial Machines, the 
‘Driving Function’ and the ‘State Function’, the 
respective operational equivalents of the Output 
Generator and the State Generator in Fig. 5. In Fig. 5, 
however, y is a direct function only of z; here, y is a 
direct function of both z and x. 

10 ‘SYSTEMS’ IN TERMS OF ‘MACHINES’ 
To Moore, scientists belong to systems: “The experiment may 
not be completely isolated from the experimenter, i.e., the 
experimenter may be experimenting on a system of which he 
himself is a part” ([12], p. 133). So “The experimenter [probing 
a ‘machine’] could be described as another sequential machine, 

also specified in terms of its internal states, inputs, and outputs. 
The output of the machine being experimented on would serve 
as input to the experimenter and vice versa” ([12], p. 135). 

Further logic-wise (but earlier text-wise), Moore ([12], p. 132) 
notes that a Psychiatrist experiments on a patient, giving inputs 
and receiving outputs. Moore’s ‘black box’ is evidently the 
mind. As Moore declares ([12], p. 132), “The black box 
restriction corresponds approximately to the distinction between 
the psychiatrist and the brain surgeon”, insofar as the surgeon 
can alter the brain, but only the Psychiatrist can alter the mind. 
(Modern surgeons might disagree, but that is beside the point.) 

For a sequential machine to be a mind, it would need to be 
capable of an enormous number of possible behaviors. Just how 
many behaviors, then, could possibly characterize a sequential 
machine? In the latter regard, von Foerster relates the case of 
graduate students tasked with ‘interrogating’ a physical Black 
Box ([14], p. 312), constructed by Ashby and having four 
distinct inputs, four distinct outputs, and four hidden distinct 
inner states (representing 4! = 24 permutations). This relatively 
simple configuration allows a truly enormous number of possible 
input/output combinations. Needless to say, the graduates were 
unable to infer the inner states. 

11 HOW A FURTHER-EXTERNAL 
OBSERVER WOULD INTERACT WITH THE 
SYSTEM 
Sections 7, 8, and 9 introduced the concept of the machine, as an 
aid to resolving a quandary. That quandary is illustrated in Figs. 
3 and 4. It is the question of whether a further-external observer 
of the BlackBox/observer system can ignore the original, internal 
observer, as if knowing of that observer’s presence and behavior. 

To resolve the quandary, let us assume first that the core 
Black Box can be probed by its immediate observer without 
being perturbed. Suppose also that the immediate observer 
remains unperturbed by the output from the core Black Box. 
Altogether, the core BlackBox/observer system is unaltered by 
its internal interactions. Hence, the degree to which the 
immediate observer and the core Black Box understand each 
other will be limited only by the number of possible inputs from 
each to the other. The core Black Box and its immediate observer 
can fully ‘whiten’ each other in time. They are Trivial Machines. 

This implies that if the core BlackBox/observer system is 
probed by a further-external observer, the latter can ignore the 
observer and directly interrogate the core Black Box. This direct 
access applies ‘by induction’ to all further-outward observers. 
This is what Glanville illustrates in 1982 [4], and is shown here 
as Fig. 3. The system formed by the combination of any observer 
with the core Black Box is no different than the system formed 
by the combination of any other observer with the core Black 
Box. The core BlackBox/observer system is penetrable. And it is 
not unique; any other, possibly further-out observer can pair with 
the core Black Box to form an identical system. 

Consider now the alternative. Imagine that the core Black Box 
cannot be probed by its immediate observer without being 
perturbed, and that, similarly, the immediate observer cannot 
receive output from the core Black Box without changing. Box 
and observer are now Non-Trivial Machines. But a Non-Trivial 
Machine concatenated with a Non-Trivial Machine is, perforce, 
a Non-Trivial Machine. The core Black Box and its immediate 



observer are now truly ‘entangled’, that is, no outside observer 
can tell them apart and hence ignore the immediate observer. 

Thanks to the concept of machines, we can now comprehend 
the difference between the portrayal of the Black Box and its 
observer in Glanville [4] and that in Glanville [7-8]. In the 
earlier Glanville, the Black Box and its observer are Trivial 
Machines; in the later Glanville, they are Non-Trivial Machines. 

If the core BlackBox/observer system is a Non-Trivial 
Machine, then it would be perturbed if probed through input 
from a further-external observer, as in Fig. 4. Whether or not 
that further-external observer is himself a Non-Trivial Machine, 
nonetheless his concatenation with the core BlackBox/observer 
system is a new system which is a Non-Trivial Machine. That 
system is a Black Box to any yet-further-external observer, and 
can be perturbed by that observer. Glanville notes that “each 
Black Box is potentially made up of a recursion of Black Boxes 
(and observers)” ([7], p. 1). Figure 10 shows the recursion. 

12 AT THE CORE OF ANY BLACK BOX 
THERE ARE TWO (OR MORE) WHITE 
BOXES, REQUIRED TO STAY IN 
The title of Glanville’s landmark paper of 1982 was “Inside 
every white box there are two black boxes trying to get out” [4]. 
Figure 2 shows this arrangement when the observer himself is a 
Black Box. But the arguments above suggest a new 
interpretation. Let us presume that the core Black Box is a Non-
Trivial Machine, composed of concatenated Trivial Machines. 
Then, no matter how many nested layers of Black Boxes and 
observers might occur Russian-Doll fashion within any Black 
Box (Fig. 10), the latter Box has an utter core containing a Black 
Box which consists of two (or more) White Boxes, boxes that 
are required to stay in – observed by an observer who, if he’s a 
Black Box himself, also consists of two (or more) White Boxes. 
Figure 11 schematizes the old versus new approaches to the 
relation of White Boxes to Black Boxes. 

13 SUMMARY AND CONCLUSIONS 
Sensations – and the ability to report them – characterize the 
mind. But no-one can directly observe their own mind, or any 
other. Here, we attempt to understand the mind indirectly, 
through the concepts of the Black Box and its observer. Ranulph 
Glanville proselytized these concepts after W. Ross Ashby. 

Ashby’s Black Box differs crucially from an engineer’s or a 
physicist’s ‘black box’: it is un-openable. But Glanville pushes 
further, taking the Black Box to be an “explanatory principle”, 
one which nonetheless has a “mechanism”. These notions well-
characterize the mind. There are other parallels. The Black Box 
is interrogated by an observer, who presents stimuli to the Black 
Box, the inputs, and who records the stimulus-evoked responses, 
the outputs. This mimics Psychiatry and Psychology. 

Through input/output interaction with the Black Box, the 
observer obtains what Glanville calls a “functional description”, 
one which “whitens” the Black Box. Likewise, however, the 
Black Box may “whiten” the observer – after all, the output from 
one is the input to the other. Altogether, the Black Box and its 
observer form a self-illuminating system, called a ‘white box’, 
having different properties than the Black Box or the observer. 

The white box is nonetheless allegedly ‘black’ to any further-
external observer. Let us call this box the ‘greater Black Box’, 
and realize that it may be probed by a further-external observer. 
How far, then, do inputs from the further-external observer 
penetrate? Glanville illustrates them going straight through the 
conceptual boundary of the greater Black Box and right up to the 
original, core Black Box itself, without interacting with that 
Black Box’s immediate observer – as if the latter’s presence and 
behavior were already ‘visible’. Regardless, Glanville later 
shows the further-external observer not penetrating the greater 
Black Box. This significant change remains unresolved. 
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Figure 10. From the viewpoint of a yet-further-
external observer, the greater system shown in Fig. 4 
is a Black Box; and so on, with each further-outwards 
Black Box having its own immediate observer. 
 
 

Here, a resolution is offered. It employs the concept of the 
‘machine’, as used by von Foerster: namely, an abstract entity 
produced by a mechanoelectrical basis. Such an abstract entity is 
the Glanville Black Box. ‘Machines’-wise, von Foerster follows 
Turing, E.F. Moore, and Ashby in recognizing archetypes that he 
calls the Trivial Machine and the Non-Trivial Machine. A 
Trivial Machine is characterized by a particular input always 
evoking a particular output, altogether providing an unchanging 
set of relations that constitutes the actual machine. But a 
mechanoelectrical basis can have internal configurations, 
denoted ‘states’; and so, in principle, can Black Boxes. States 
can change in response to input or output, such that a particular 
input need not result in the same output later. This characterizes 
Non-Trivial Machines, which can have an enormous range of 
such ‘behaviors’. The mind, too, has numerous ‘states’, allowing 
a broad range of behaviors, and those ‘states’ can change or 
increase in number through learning. For example, our response 
to a stimulus (such as an event, or a question) can differ from our 
previous response, and in unexpected ways. The mind is a Non-
Trivial Machine, an abstract entity having a mechanoelectrical 
basis; it is a Black Box, an explanatory principle. 



We now ask whether the observer of any Black Box can 
provide input, and record output, without changing the Box’s 
possible output to the next input. Likewise, we must ask whether 
the Black Box leaves its own observer unperturbed. Consider 
answering “Yes” to both questions. If so, the observer’s 
knowledge of the Black Box, and the Black Box’s knowledge of 
its observer, will be limited only by the variety of the inputs 
from each to the other. The Black Box and its observer are now 
Trivial Machines. They will mutually discover this in time, as 
they ‘whiten’ each other through input and output. 
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Figure 11. White Boxes versus Black Boxes. (Upper) 
The Glanville [4] view that “Inside every White Box 
there are two Black Boxes trying to get out”. (Lower) 
The view that at the utter core of any Black Box there 
are two (or more) White Boxes, required to stay in. 

 
 

Now consider the contrary. That is, imagine a Non-Trivial 
Machine that is the Black Box. Imagine another Non-Trivial 
Machine, that is the observer. The BlackBox/observer duo 
continually alter each other as each receives inputs and produces 
outputs. Altogether, then, the BlackBox/observer duo form a 
new Non-Trivial Machine. In this case, no further-external 
observer can differentiate the Black Box from its observer; the 

internal observer cannot be recognized, and hence it cannot be 
bypassed. The BlackBox/observer duo is now truly a system. 

This system, the greater Black Box, a Non-Trivial Machine, 
will change when probed by the further-external observer. That 
is, the further-external observer and the greater Black Box 
altogether constitute a new system, which itself is a Black Box 
and a Non-Trivial Machine. Likewise, this new system changes 
when probed by a yet-further-external observer. This may 
continue, in a recursion of Black Boxes and their observers. 

Glanville’s seminal paper (1982) was titled “Inside every 
White Box there are two Black Boxes trying to get out”. Instead, 
we can say that at the utter core of any Black Box there are two 
(or more) White Boxes, required to stay in. Those two or more 
White Boxes may be considered the ultimate source of the mind. 
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From tools to social agents  

Anna Strasser1

Abstract. Up to now, our understanding of sociality is neatly tied 

to living beings. However, recent developments in Artificial 

Intelligence make it conceivable that we will entertain interactions 

with artificial systems which have social features in the near 

future. By suggesting a minimal approach to a conceptual 

framework of socio-cognitive abilities, this paper presents a 

strategy of how social interactions between humans and artificial 

agents can be captured. Taking joint actions as a paradigmatic 

example, minimal necessary conditions for artificial agents are 

elaborated. To this end, it is first argued that multiple realizations 

of socio-cognitive abilities can lead to asymmetric cases of joint 

actions. In a second step, it is discussed how artificial agents can 

meet minimal conditions of agency and coordination in order to 

qualify as social agents in joint actions.12 

1 INTRODUCTION 

Soon we will share a large part of our social lives with various 

kinds of artificial systems. Besides using them as tools in order to 

interact with other human agents or to retrieve information, it is 

conceivable that we will as well entertain social interactions with 

artificial agents. Even though most of those interactions can 

sufficiently be described as tool use, it is worthwhile to investigate 

whether artificial agents may possess socio-cognitive abilities 

which enable them to overtake the role of a social agent and 

thereby constitute a new range of social interactions. 

For example, think about future interactions with care-robots 

and conversational machines (chatbots). Imagine an older person 

spending most of her time with a care-robot – not only using this 

robot as an assistant but also to communicate and to satisfy her 

social needs. I claim that categorizing such interactions as mere 

tool use will neglect important social aspects. Having such 

interactions in mind, it is an urgent challenge to explore the 

potential role of artificial agents in the realm of social cognition 

and describe circumstances in which artificial agents could be 

considered as social agents and not as mere tools. 

However, our current conceptual framework concerning social 

agents cannot account for artificial agents as social agents. To 

overcome this restriction, we have two options: We can either 

propose an extension of the concept of tools, claiming that there 

are more complex tools which have some social features. 

Alternatively, we can contemplate an extension of our conception 

of social agents. Assuming that there are interactions conceivable 

for which it is at least questionable whether we can classify them 

as tool use, I will pursue the latter.  
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2 RESTRICTIVE UNDERSTANDING OF 

SOCIALITY 

Up to now, our understanding of sociality is neatly tied to living 

beings. Social cognition is treated as a distinguishing feature of 

living beings. Research about social cognition includes topics 

such as social knowledge, social structure, group behavior, social 

influence, memory for social information, and attribution of 

motives [1]. All this is explored in humans and several species of 

the animal kingdom. 

Focusing on the practice of ascribing socio-cognitive abilities, 

one can object that there are two modes of ascriptions: an ‘as if’ 

mode and a justified mode of ascription. The ‘as if’ mode has an 

explanatory role, it helps us to make sense of the world, but it 

remains neutral about the question of what socio-cognitive 

abilities objects really have. For instance, a famous experiment by 

Heider and Simmel [2] illustrates how participants attribute social 

properties while describing simply moving geometrical forms. 

Although it is helpful and enlightening to characterize perceptual 

input through a social narrative and not through a technical 

description of geometric forms, it is of course not justified to 

claim (and no one does) that these objects actually have social 

features. Along the same lines, Daniel Dennett [3] describes how 

we apply the intentional stance to non-living beings.  

Turning to standard philosophical notions which characterize 

socio-cognitive abilities as if they were unique to sophisticated 

adult human beings, we are even confronted with more restrictive 

notions. For example, the notion specifying individual agency [4] 

requires demanding conditions such as consciousness, the ability 

to generate goals, the ability for free choice, having propositional 

attitudes, mastery of language, and intentionality. Likewise, the 

notion of joint action as introduced by Michael Bratman [5] 

presupposes cognitively demanding conditions. Without having 

the ability to entertain shared intentions, agents do not qualify for 

joint actions. Thus, having shared intentions requires not only 

having an intention but also the ability to entertain a specific belief 

state, namely a relation of interdependence and mutual 

responsiveness which in turn presupposes common knowledge. 

According to Bratman, only participants who are able to 

coordinate and build up explicit relations of commitment qualify 

as proper social agents in joint actions.  

However, such notions account for full-fledged, ideal cases, 

and cannot capture other forms of realizations with less 

demanding or simply different requirements. Research in 

developmental psychology, as well as in animal cognition, 

indicates that there are multiple realizations of socio-cognitive 

abilities. Moreover, even with respect to adult humans, one can 

observe that such ideal cases occur less often than expected. For 

 



instance, under time pressure otherwise sophisticated adults fall 

back on less demanding realizations. Likewise, developing 

expertise in a skill is often based on the automatization of formerly 

sophisticated processes.  

Even though research indicates that there are multiple 

realizations of socio-cognitive abilities in various types of agents 

such as infants and non-human animals [6, 7, 8], non-living beings 

still are in principle excluded from having social capacities. 

Therefore, the aim of considering non-living artificial agents as 

social agents presents a revolutionary challenge. In order to 

investigate how to account for sociality with respect to artificial 

agents, one has to explore how to overcome the restrictive nature 

of our current understanding of sociality.  

Once we have a conceptual framework which is able to capture 

socio-cognitive abilities of artificial systems, further questions 

concerning the consequences of potential social interactions will 

arise. And last but not least, analyzing potential consequences, 

one can evaluate whether developing artificial social agents is a 

desirable goal at all. 
Inspired by the strategy of so-called minimal approaches [9, 

10], which offer notions for socio-cognitive abilities of infants and 

non-human animals, this paper discusses potential minimal 

necessary conditions with respect to artificial agents. The aim is 

to elaborate under which circumstances interactions with artificial 

agents qualify as social even though we know that artificial agents 

are not living beings. When artificial systems prove to be capable 

of displaying socio-cognitive abilities, this will constitute a new 

category of social interaction that still is reasonably similar to 

those we observe among humans or other living beings.  

Recent studies in social neuroscience already show that 

interactions with artificial agents (avatars) are at least somehow 

comparable to interactions among humans. On the one side, social 

scientists study avatars as a way of understanding people [11]. 

Such studies investigate interactions between humans while they 

are embodied in avatars. Thereby special features of interacting 

with virtual representations are explored. On the other side, 

artificial agents are used in experimental designs in which 

participants are tricked in the sense that they believe that the 

interaction partner is a human counterpart while they are actually 

interacting with an artificial agent. If interactions with artificial 

systems would not have any similarities with human-human 

interactions, we could not use them to explore human behavior. 

However, it is important to note that this paper is not about 

working out to what extent people might be tricked by an artificial 

agent and attribute social characteristics in an ‘as if’ manner. Just 

taking an intentional stance [3] does not yet justify an attribution 

of socio-cognitive abilities as such. The aim here is to investigate 

whether artificial systems can actually have socio-cognitive 

characteristics. To explore this theoretical possibility of finding 

socio-cognitive abilities in artificial agents we have to be cautious 

not to mix ‘as if’ ascriptions with justified ascriptions. The 

question as to whether we are justified in ascribing socio-

cognitive abilities to artificial systems is based on the assumption 

that the increasing experience of interacting with artificial agents 

is likely to alter our understanding of social agents radically. 

3 CONSEQUENCES OF ARTIFICIAL 

SOCIAL AGENTS  

The possibility that artificial agents might qualify as proper social 

agents in interactions with humans will raise new ethical and 

juristic questions. As soon as an artificial agent is understood as a 

social agent, we need to pose questions about the duties and rights 

this artificial agent deserves as an interaction partner.  

Regardless of whether an artificial agent is considered as social 

agent or as tool, it is common sense that artificial agents should 

not harm other living beings. However, as soon as we treat 

artificial agents as social agents (and not ‘as if’ they were social 

agents), this might involve ascribing rights to them. Since our self-

understanding of fairness and justice is based on how we treat 

other social agents, it will be important to develop social norms of 

how to treat artificial social agents. Already in a transitional 

phase, when artificial systems are not yet proper social agents, our 

interactions with them can influence our behavior towards other 

living social agents. Imagine a person using an artificial agent 

which is strikingly similar to a human in order to satisfy some felt 

needs, needs fulfillment which most people would find shameful, 

if not downright criminal, if it were to be acted out with another 

human agent. How can we preclude that this behavior with an 

artificial agent might not make it more probable that the person 

would end up crossing the line between fantasy and reality in the 

public world? 

Furthermore, regarding the outcomes of joint actions in which 

artificial social agents are involved, we have to face new questions 

of responsibilities. For example, regarding responsibilities of 

autonomous driving systems, we might ask whether a person who 

is using an autonomous vehicle while having no way of taking 

over control, still should be held responsible for possible accidents 

[12]. The more autonomous artificial systems become, the more 

pressing becomes the question whether simply the producers and 

the users are alone accountable for the outcome of the actions of 

those systems. 

Where previous revolutions have dramatically changed our 

environments, this one has the potential to change our 

understanding of sociality and may lead to new social norms. 

4 SOCIO-COGNITIVE ABILITIES OF 

ARTIFICIAL AGENTS 

Accounting for socio-cognitive abilities of artificial agents, we 

have to assume that there are further multiple realizations that are 

not covered by our current conceptual framework. Recent 

research has already shown that there are certain multiple 

realizations of socio-cognitive abilities. For instance, we have 

data about how non-human animals and also very young infants 

are able to demonstrate social competences which presumably are 

based on socio-cognitive abilities. Even though there are 

controversial debates about how exactly such competences are 

realized, it is obvious that the requirements of full-fledged, ideal 

cases are not fulfilled in such instances.  

For example, it is common sense to assume multiple 

realizations regarding the ability to anticipate the behavior of 

others. Traditional conceptions of mindreading require the 

mastery of language as a necessary condition. But, the 

competence to anticipate the behavior of other agents has also 

been observed in populations where we cannot assume mastery of 

language is operating. Admittedly, interpretations of how this 

competence is realized in non-verbal populations are 

controversial. Some positions claim that those competences are 

best explained by the application of behavioral rules [13, 14, 15] 

and thereby deny mentality to such realizations. Others argue for 

genuine mindreading abilities [16, 17]. This debate is far from 



being decided; up to now, neither the behavioral nor the 

mentalistic interpretation can yet exclude the other. Consequently, 

the question as to whether infants or non-human animals possess 

the socio-cognitive ability of mindreading is still an open 

question. Therefore, it seems feasible at least to pose the question 

as to whether artificial systems can display socio-cognitive 

abilities.  

Starting with the assumption that our understanding of socio-

cognitive abilities is too restrictive, the exploration of minimal 

conditions for socio-cognitive phenomena concerning artificial 

systems can suggest an extension of our current conceptual 

framework for attributing socio-cognitive abilities.  

5 CONDITIONS FOR JOINT ACTIONS 

Joint actions constitute an interesting subset of social interactions, 

a subset in which people cooperate and do things together in order 

to reach a common goal. Taking joint actions as a paradigmatic 

example, this paper discusses necessary minimal conditions 

which qualify artificial agents as proper participants in a joint 

action, and specifically as social agents. A minimal notion of joint 

action can distinguish tool use from joint actions and thereby 

enable a finer-grained description of, for example, human-

computer interactions. 

Although the philosophical debate about joint actions is rather 

controversial, one can summarize some important requirements 

which can be seen as necessary. Disagreements start when it 

comes to questions of sufficiency. An event can only qualify as a 

joint action if it results from the input of multiple agents. That 

means the effect of this event can be described as a common 

outcome of what several agents did, and whereby the individual 

agencies are intentional under some description [4]. To 

distinguish mere plural activities from joint actions, we must 

require that both agents aim at bringing about the same effect. As 

a consequence, some sort of coordination is required in addition. 

And it is further claimed that this coordination is achieved through 

special psychological mechanisms. However, the question as to 

whether these mechanisms can be based on shared goals (weak 

sense of joint action), or whether these mechanisms have to 

include shared intentions (strong sense of joint action) to ensure 

that not only the same goal is achieved but also that this goal is 

jointly aimed at, is still under debate.  

Both strategies are problematic. The weak sense of joint action 

captures cases in which individual agents treat each other as social 

tools, whereas the stronger sense requires overly demanding 

conditions which are, for example, not fulfilled by young children. 

Inspired by Pacherie’s notion of ‘intention lite’ [18], I assume that 

there are middle cases which can exclude the social tool cases and 

at the same time refer to less demanding conditions. 

To approach a solution, I first argue that there are asymmetric 

cases of joint actions in which the distribution of abilities is not 

equal among the participants. Uncontroversial cases of 

asymmetric joint actions are, for example, mother-child 

interactions. Despite the fact that infants do not fulfill the full-

fledged sophisticated conditions of a strong sense of joint action, 

they are regarded as social agents in joint actions. That means they 

are able to act jointly with an adult participant while their fulfilled 

conditions differ from those of the adult. Consequently, it is 

sufficient to require less demanding conditions from one 

participant of a joint action. The performance of the participants 

in an asymmetric joint action can be based on multiple 

realizations. Consequently, artificial agents do not have to fulfill 

the very same conditions required of human adults.  

Since any notion of joint actions describes a plural activity, one 

has to presuppose the ability to act. Already at this point, we need 

an alternative notion of agency different from that which standard 

philosophical positions [4] offer. In order to capture the notion of 

agency operative in artificial systems, we need a notion which 

does not rely on features we find only in biological systems. I have 

developed elsewhere a minimal notion of agency which does not 

rely on biological constraints [19, 20], and makes sure that 

artificial agents are worthy of being considered as potential actors. 

If artificial agents are not able to act in the appropriate sense, any 

further questions as to whether they might qualify as acting jointly 

would, of course, be a waste of time. For the sake of argument, I 

presuppose here that artificial systems can qualify as minimal 

actors. In line with the conception of asymmetric joint actions, a 

joint action performed by a mixed group of humans and artificial 

agents can then be seen as a combination of two types of agency. 

The ability to coordinate will be at center stage in this 

investigation because coordination plays a crucial role for 

constituting the social dimension of joint actions. Regardless of 

whether one assumes shared goals or shared intentions, successful 

coordination in social interactions presupposes social 

competence. Agents must have some sort of an understanding of 

the other agents which makes it possible to anticipate the other’s 

behavior and to rely on the other’s willingness to take over its part. 

Consequently, mindreading and commitment are seen as 

important factors for ensuring the social competence needed for 

coordination which is necessary in joint actions.  

6 ANTICIPATION – MINDREADING 

It is common sense that a major function of social cognition 

consists in abilities to encode, store, retrieve, and process social 

information about conspecifics, as well as across species, in order 

to understand others. One important aspect, namely the ability to 

anticipate the behavior of other agents, plays an important role in 

many social interactions. Being able to act jointly we have to be 

able to anticipate what the other agent will do next. In the 

humanities and natural sciences, this aspect of social competence 

is discussed under the label of ‘mindreading’ or ‘Theory of Mind’ 

[21]. 

If artificial agents qualify as social agents in a joint action, we 

have to expect mindreading abilities from them. As we have 

already seen with respect to the notion of agency, standard notions 

tend to be rather restrictive and demanding. The same is true for 

mindreading. Many conceptions of mindreading are tailored to 

adult humans and refer to a full-fledged form of mindreading 

requiring a mastery of language, as well as cognitively demanding 

abilities such as meta-representations.  

Assuming multiple realizations and building upon minimal 

approaches, one can elaborate minimal necessary conditions of 

mindreading. In this paper, I am arguing that the less demanding 

conditions for minimal mindreading [9] provide an attractive 

alternative to capture the mindreading abilities of artificial agents. 

In contrast to full-fledged mindreading, this minimal approach 

specifies minimal presuppositions for mindreading. Instead of 

requiring a wide range of complex mental states, Butterfill and 

Apperly [9] specify two mental states, namely encounterings and 

registrations. Roughly speaking, one may characterize 

encounterings as a kind of simple perception, whereas 



registrations could be described as a rudimentary form of 

believing. A minimal mindreader infers from observable cues to 

the mental state of encountering. With respect to the last observed 

encountering, the minimal mindreader then ascribes a further 

mental state (registration) to the other agent. Finally, she applies 

a minimal theory of mind – which consists in the knowledge that 

goal-directed actions rely on registrations – to anticipate the 

behavior of the other. Minimal mindreaders can in a limited but 

useful range of situations track others’ perceptions and beliefs 

without representing perceptions and beliefs as such, but instead 

representing encounterings and registrations. Minimal 

mindreading is regarded as implicit, nonverbal, automatic, and is 

based on unconscious reasoning. 

Research in artificial intelligence has already demonstrated 

that artificial agents can model mental states of human beings with 

respect to the perspective of a human counterpart [22]. This shows 

that artificial agents, in principle, are able to infer from their 

perception of the physical world to what a human counterpart can 

see or cannot see in terms of an object and are capable of inferring 

that this perspective will guide future actions of the human. That 

means some cases of mindreading can be achieved by artificial 

agents. 

At this point, one can object that we are neglecting the genuine 

social aspect of mindreading. Admittedly, many examples in the 

mindreading debate tend to relate to mental states such as 

knowing and perceiving. Desires and emotions are not yet at the 

foreground of these debates. Focusing on the genuine social 

aspect, one can conclude that qualifying as a mindreader should 

include the ability to process social information. For instance, we 

do not only have to notice that another agent is noticing something 

that is relevant for the joint action, but we should also recognize 

whether the other agent is desiring something or is afraid of 

something. This presents a special challenge for artificial agents. 

Taking into account that human anticipatory systems fairly 

seamlessly include social and emotional aspects, we have to 

explore whether artificial systems are able to process such data as 

well. To anticipate future actions of other agents, it is not only 

relevant to consider their mental, but also their emotional states. 

Turning to emotional data, actual research on social robotics is 

highly relevant, specifically in relation to the development of 

robots which are designed to enter the space of human social 

interaction. For example, research pertaining to conversational 

agents aims to develop artificial agents from mere tools into 

human-like partners [23, 24]. Since the processing of social data 

plays an important role in social interactions, social relationships 

between artificial agents and humans presuppose that the artificial 

agents interpret the social cues presented by their interacting 

partners. And they should also be able to send social cues in order 

to make their ‚minds’ visible.  

Much research is now focusing on social cues such as gestures 

[25] and emotional expression [26, 24]. For example, ARIAs 

(Artificial Retrieval of Information Assistants) [27] are able to 

handle multimodal social interactions. They can maintain a 

conversation with a human agent and, indeed, they react 

adequately to verbal and nonverbal behavior. Even though results 

in social robotics may not apply to an unlimited range of 

situations, this shows that there are ways for artificial agents to 

process social data. 

The above considerations indicate that artificial agents, in 

principle, are able to process social data and make use of it to 

anticipate the behavior of their interaction partners. Further 

developments in social robotics will probably also make it easier 

for the human counterpart to anticipate the behavior of the 

artificial agent.  

However, according to traditional philosophical notions of 

mindreading, mere processing of emotional data is not taken as 

sufficient. In addition, having emotional and mental states is 

required. Assuming that mental or emotional states are 

exclusively found in living beings, our question as to whether 

artificial agents can be social interaction partners in a joint action 

turns into the question as to whether having mental and emotional 

states is a necessary requirement for realizing socio-cognitive 

abilities such as mindreading. One might argue that future AI 

systems might someday have mental and emotional states. But up 

until now, it does not look like as if this is to be expected in the 

near future. Therefore, the crucial question is whether we can 

ensure that we are not losing the sociality aspect even if we 

sacrifice mental and emotional states.  

So far, the notion of minimal mindreading [9] is a promising 

starting point to characterize mindreading abilities of artificial 

agents. As we have seen, this notion questions the necessity of 

overly demanding cognitive resources, such as the ability to 

represent a full range of complex mental states and a mastery of 

language. And most importantly for artificial agents, the ability 

for minimal mindreading need not be based on conscious 

reasoning. Nevertheless, up to now, this notion has been only 

applied to living beings, only accounting for automatic 

mindreading in human adults, infants, and non-human animals. 

Even though this notion does not require conscious reasoning 

from a mindreading agent, future work will have to deliver further 

adjustments before it can be applied to artificial systems.  

In sum, one can argue that, in principle, artificial systems are 

able to process social and mental data and use it with a Theory of 

Mind to anticipate the behavior of human agents and thereby 

qualify as mindreaders. In a transition phase, it is likely that this 

works only in a very limited range of situations and it might be a 

special feature of asymmetric joint actions that they always only 

constitute a limited subset of joint actions. 

7 COMMITMENT 

Another aspect of the required social competence enabling 

successful coordination in a joint action can be described as the 

ability to be committed to a joint action. To explore commitments 

with respect to artificial agents, the recently developed notion of 

a minimal sense of commitment [10] presents a good starting 

point. 

Commitments are relations between agents and an action 

which provide the security human social agents need to rely on 

each other. Additionally, commitments support the success of 

mindreading, since the behavior of agents who are sticking to their 

commitments is far easier to be predicted. In sum, one can claim 

that commitments function as the ‘social glue’ for much of what 

counts as social interactions.  

Standard philosophical conceptions [28, 29, 30] characterize 

commitments as a relation between two or more agents and a 

specific action: An agent is committed to performing a specific 

action if she has assured her commitment and the other agent has 

acknowledged this. One component of a commitment is based on 

the motivation of one agent to contribute a specific action to a 

joint action; the other component is based on the corresponding 

expectation of the other agent that the counterpart will contribute 



to the joint action. Additionally, it can be claimed that this requires 

explicit acknowledgment and common knowledge. Standard 

conceptions of commitments rely on explicit utterances and are 

interpersonal since they describe a reciprocal relation between (at 

least) two agents. This can be contrasted with self-commitments 

which require just one agent.  

Analyzing the possible classes of interpersonal commitments, 

it becomes obvious that standard conceptions neglect other 

potential cases. For example, not all interpersonal commitments 

require necessarily explicit assurances and acknowledgments. We 

experience implicit commitments in everyday life situations when 

agents feel and act committed even though no commitment was 

explicitly acknowledged [31]. Research in developmental 

psychology indicates cases of implicit commitments by showing 

that young children are capable of engaging in joint actions which 

rely on an interpersonal commitment without an explicit 

acknowledgment [32]. Therefore, it seems uncontroversial to 

claim that commitments can also be realized in an implicit way.  

Coming back to the notion of a minimal sense of commitment 

[10], we have a minimal approach to interpersonal commitments 

within which implicit commitments are also captured. It is of 

special interest with respect to the aim of this paper that this 

minimal approach additionally illuminates other neglected 

minimal forms of interpersonal commitments. Michael and 

colleges [10] argue that components of a standard commitment, 

namely the expectation or the motivation, can be disassociated. 

Consequently, they claim that a single occurrence of just one 

component can be treated as a sufficient condition for a minimal 

sense of commitment. Presupposing that there is a goal of a 

potential joint action desired by one agent for which an external 

contribution of another agent is crucial, a minimal sense of 

commitment is already constituted if either one of the agents has 

a certain motivation, the other has a specific expectation, or both 

entertain the corresponding mental states.  

In the standard cases, expectations are justified by the 

motivation of the other agent, whereas in minimal cases the 

expectation of one participant can be sufficient. Applying this to 

asymmetric joint actions, a minimal sense of commitment realized 

by one participant (e.g., the human) can be sufficient. Assuming 

that artificial agents neither have emotional nor mental states 

displaying a minimal sense of commitment presents a real 

challenge for attributing commitments to them. Future work will 

investigate whether artificial agents can display functionally 

equivalent states according to which it becomes reasonable to 

ascribe a minimal sense of commitment to them. However, with 

respect to asymmetric joint actions, it is, for the most minimal 

case, sufficient if only human counterparts entertain a minimal 

sense of commitment. 

8 CONCLUSION 

Presupposing that artificial agents become increasingly prevalent 

in human social life, it is important to examine whether we are 

justified in ascribing socio-cognitive abilities to them, and go on 

from there to consider artificial agents as social agents.  

Starting with an examination of current and rather restrictive 

conceptions of sociality, this paper explored minimal necessary 

conditions enabling artificial agents to enter the realm of social 

cognition. One question was whether it can be a function of social 

cognition to encode, store, retrieve, and process social information 

not only concerning conspecifics or other species but also 

regarding artificial agents. Another question was whether 

artificial agents can have social cognition to encode, store, 

retrieve, and process social information concerning human beings. 

Building upon multiple realizations of socio-cognitive 

abilities, I argued that there are asymmetric cases of joint actions 

in which the distribution of abilities is not equal among the 

participants. Therefore, artificial systems could take advantage of 

this asymmetry, which applies in some human cases of joint 

actions, so that, as has been argued, they do not have to fulfil the 

same – and idealized – conditions that are normally assumed to be 

fulfilled by living beings. 

To this end, I suggested a minimal approach to joint actions 

when characterizing a joint action between artificial and human 

agents. I suggested easing the standard requirements for joint 

actions, which are based on demanding conceptions of agency and 

coordination. In a first step, I suggested replacing the demanding 

notion of agency with a minimal notion of agency according to 

which artificial systems can be seen as, at least, potential actors. 

In a second step, presuppositions of successful coordination in 

joint actions were analyzed. The social competence to anticipate 

the behavior of other agents (mindreading) and to rely on their 

willingness to take over their part (commitment) were at the center 

of this investigation. 

Developing minimal conditions for the requested social 

competence, I questioned whether having mental or emotional 

states is a necessary condition. Not requiring mental or emotional 

states is crucial for maintaining that proposed minimal conditions 

still can ensure that we are not losing the sociality aspect, on 

which we are focusing when we discuss whether artificial agents 

qualify as social agents.  

With respect to mindreading, a possible obstacle for artificial 

agents may be the ability to process and interpret social data such 

as gestures, facial expressions, and gaze following. However, 

developments in social robotics demonstrate that processing such 

social data is at least not impossible. It may not yet be sufficient 

to cover all sorts of social interactions, but it can cover a subset of 

social interactions. If having mental and emotional states is not a 

necessary requirement for successful processing of social data, a 

more completely developed notion of minimal mindreading [9] 

has the potential to capture the notion of social competence in 

artificial systems.  

Focusing on the question as to under which circumstances a 

sense of commitment may arise in such interactions, 

considerations about the recently developed notion of a minimal 

sense of commitment [10] indicate how commitments can play a 

role in joint actions with mixed groups of artificial and human 

agents. 

In sum, this sketch of a variety of minimal approaches 

describes joint actions of mixed groups of humans and artificial 

agents as a combination of two different sets of requirements. 

Whether interactions between two artificial agents may have 

social features will be a topic of future research. 

In limited situations, we might even now claim that, for 

example, conversational machines are able to coordinate their 

speech acts to the speech acts of their dialogue partner, and 

thereby meet an important condition for joint action. Whatever 

future research will bring, with a conceptual framework that 

clarifies requirements for social agents, we can better 

characterize, understand and regulate potential social interactions 

with artificial agents.  
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The Natural Connectivity of Autonomous Systems
Steve Battle 1

Abstract. The concept of enaction, or embodied cognition, de-
scribed by Varela et al., aims to resolve the the dilemma of Carte-
sian mind-body dualism by re-casting these categories as comple-
mentary explanations of the same phenomena. This paper explores
Varela’s symbolic/operational abstractions of these domains and the
coupling between them, as applied to autonomous, enactive robots.
As observers we may describe the behaviour of a robot symboli-
cally, in terms of its function in the world. On the other hand, the
autonomous robot can also be described in purely operational terms,
as a behaviour that persists solely through self-regeneration; for no
other purpose than to exist. Its meaning and purpose arise almost as
an irrelevant side-effect of being in the world; its structural coupling
with an environment.

1 INTRODUCTION

Robots suffer from the mind-body problem insofar as their program-
mers routinely impose upon their mechanical bodies a mind built of
code. Code brings along the baggage of the physical symbol hypoth-
esis and representationalism, and we wonder that the robot cannot
make-sense of the world.

Enactive cognition is an approach to understanding how robots can
operate autonomously in the human environment. The approach is
rooted in the existentialist philosophy of Martin Heidegger [10], and
his ideas of the nature of human existence as being thrown into the
world with all the physical needs that entails. Where a disembodied
computer has no real needs, a mobile robot has very real power re-
quirements to satisfy. An autonomous robot is thrown into this world
just as we are. While this may not count as a lived experience, for
robots are not alive, can we speak of an experience of being a robot?

Varela’s enactivism [15] emerged alongside Maturana and Varela’s
Autopoiesis [12]. Where Maturana is concerned primarily with the
physical self-organisation of living structures, Varela’s theory of au-
tonomous systems [14] focuses on functional self-organization alone.
The latter theory is far more pertinent to AI and autonomous robotics,
which cannot be considered to be alive (autopoietic). Whilst not
alive, a robot must protect its own existence; its selfhood, realised
as a complex of behaviours. These behaviours constitute a closed
homeostatic loop with the goal of ensuring its continued survival.

The enactive approach challenges the notion of representation. In-
stead of seeing representations as symbols manipulated directly by
brains, they should be seen instead as occurring in the interaction
(structural coupling) with the world; more physical skill than com-
putation. It is not entirely intelligence without representation [3], but
intelligence with representation in its proper place, as symbolic, but
non-functional explanation as seen from an observer’s perspective.
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We cannot yet claim that robots are observers in any real sense, but
we can explore lower-grade autonomous behaviours.

2 SYMBOLIC EXPLANATION
A robot is structurally coupled with its environment through sensori-
motor activity. This is the interface of the robot with its environment.
We can record the external behaviour of the robot; not just movement
but also sensor data. We are interested in autonomous behaviours that
enable robots to function semi-independently of humans.

Figure 1. ELSIE simulation. Her scanning turret (direction in green)
contains a single photo-cell, and her shell senses obstacles on contact.

The working example used throughout this paper is W. Grey Wal-
ter’s ELSIE robot that we will refer to as she as befitting her name.
The name is an acronym for Electro-mechanical Light-Sensing robot
with Internal and External stability. She has a functional simplicity
that lends itself well to examples, and yet she is also an autonomous
robot in that her behaviour exhibits a long term viability as she is also
able to periodically recharge her batteries. These Machina specula-
trix were not digital computers, but were analogue electronic crea-
tures. It wasn’t simply that stored-program digital computers didn’t



physically exist until 1948. But according to Walter, no “variety of
programming endow a machine with the autonomous qualities of a
true mimicry of life.” Whatever the truth of this, we can explore the
analogue behaviour of these creatures by simulating them in soft-
ware.

In order to understand ELSIEs behaviour, a software simulation
was constructed. This is not a deep simulation of her electronics,
but is based on a rule-based model of her behaviour. This drives a
two-dimensional kinematic simulation of the robot hardware, a three-
wheel trolley with a scanning front wheel and light sensor. The sim-
ulated environment is populated by random obstacles and a single
source of light and power. A screen-capture of the ELSIE simula-
tion can be seen in figure 1. The output includes a trace of her recent
position displaying her characteristic epicyclic trajectory.

ELSIE can sense the light-level collected by a photocell within a
scanning turret containing a single photocell. The photocell is direc-
tional and this direction is indicated by the green line. As the scanner
sweeps across the light source, her circuitry is stimulated by the in-
creasing light level to increase the speed of the drive motors, and
simultaneously reduce the scanning speed. This behaviour gradually
brings her closer to the light where her source of power resides.

On encountering an obstacle, the movement of her outer shell
pressing against it, activates a ’trembler’ switch. When this happens
she enters an oscillatory state that switches rapidly between push-
ing and turning, “The steering-scanning motor is alternately on full-
and half-power and the driving motor at the same time on half- and
full-power” [9]. This enables her to wriggle free of the offending ob-
stacle both in reality and in simulation, as shown in figure 2. She has
separate drive and steering motors both ingeniously connected to the
front scanning wheel. These run at different speeds according to her
current state.

Figure 2. ELSIE simulation. Obstacle detection is simulated by the
intersection of the robot’s bounding box with that of an obstacle. It remains

active for a short period after breaking contact.

Even where behaviour is continuous and analogue, it may be clas-
sified symbolically. This includes both sensor data and motor activity.
The underlying analogue circuitry of ELSIE [9] is discretised into a
set of symbols (E, P, N, O, R). These symbols are arranged in a string
where the left-right order represents her observable behaviour in the
world as time passes. We record only changes in state, so no pairs
of neighbouring symbols are alike. To emphasise viable behaviours,
the simulation includes a virtual battery that rapidly runs down as
ELSIE explores (E) her environment. As she encounters obstacles
(O), ELSIE wriggles free of them. ELSIE is attracted to light from
afar (positive phototaxis P), but as she approaches on a full battery
she is repelled from the bright light (negative phototaxis N). Only
when her battery discharges is her repulsion to bright light overcome,
allowing her to approach the light source and recharge (R). While
ELSIE is recharging both motors are disconnected. These rules are
summarised in table 1. The simulation is used to generate data for
training and testing.

Table 1. ELSIE behavioural patterns

behaviour pattern collision light level scan/drive
E - Exploration no low fast/slow
P - Positive phototropism no medium stop/fast
N - Negative phototropism no high slow/fast
O - Obstacle avoidance yes ANY 1Hz oscillation
R - Recharge no ANY stop/stop

From an enactive perspective, this is sensorimotor data only from
an observer’s perpective. An enactive system has no symbolic in-
put/output. Of course a robot has sensors and actuators, but these can
be thought of as acting, and being acted upon, causally. The photo-
cel and trembler switch are simply non-symbolic components in an
electrical circuit. There is no information passed from the external
world to some notional information processor. Varela admits causal
perturbation of an autonomous system, which we may think of as a
pattern generator adapted to its environment.

A modern computer-based robot could collect sense-data. Within
an enactive architecture it is important that this raw data is stripped
of any intrinsic meaning. Meaning only arises when sense data is
combined and compared, and can be modulated by motor activity.
Computer based systems that receive pre-labeled input are enabled
in their narrow task domain by getting this semantics for free, but are
denied the opportunity of discovering a semantics of their own.

3 AUTONOMOUS SYSTEMS

While the behaviour of robots like ELSIE could be captured as a
dynamical system, Varela sought alternative approaches that could
be used to understand the cyclic nature of autonomous systems. In
Principles of Biological Autonomy [14], Varela explores the logic
of distinctions expounded by G. Spencer Brown [13], using this to
discover autonomous recurrent states. State-machines provide a sim-
ilar alternative that are perhaps more familiar to a modern audience.
Representing a state-machine in matrix form as an adjacency matrix,
enables us to analyse these cyclic behaviours, or eigenbehaviours.
This eigenbehaviour is the signature of the autonomous system, con-
stituting its very identity.

Each node of a state-machine represents a distinct, separate state,
which is simple and effective for primitive robots, but with increased
complexity, the method would quickly get out of hand because of
combinatorial explosion. As an autonomous system a state-machine



satisfies the need for organizational closure. This means that there is
no input/output to consider, so the transitions of the state-machine are
unlabelled and simply connect one state to another to form a graph
that closes in on itself. It is state-driven and finite, and is therefore
capable of generating cyclic behaviour. For this analysis we are in-
terested in the fundamental ‘loopiness’ of the behaviour it is capable
of generating.

The nature and number of states is not to be identified with the
behavioural states of the observable symbolic explanation above.
The states are hidden, in that the states that the autonomous system
passes through are not directly apparent in the symbolic behavioural
data. State is hidden in the same sense that it is hidden in a Hidden
Markov model, but for the analysis of the autonomous system used
here we do not require the probabilistic parameters (transition and
output probabilities) of the HMM.

A state-machine as a directed graph can be represented as a square
adjacency matrix, where a one at the intersection of a particular
row and column represents a possible transition from the current
state (row) to the next state (column). The coupling between the au-
tonomous system and its environment, or at least a symbolic descrip-
tion of it, is provided by another matrix that relates the hidden states
of the autonomous system to the behavioural sensorimotor symbols.
This is an incidence matrix relating hidden states to output symbols.
The sensorimotor symbol can be described as a function of the cur-
rent state, permitting multiple states to emit the same symbol but
without the additional variability that HMMs allow for with a vector
of output probabilities associated with each state.

Figure 3. A 6-state machine produced by generating a Hidden Markov
Model and discarding the transition probabilities has more edges than
necessary. The graph shows each node number and emission symbol.

The adjacency matrix can be constructed using the tools for train-
ing Hidden Markov Models. Given one or more symbol sequences
(emissions) it is possible to estimate the transition probabilities for a
hidden Markov model using the Baum-Welch algorithm [2], a hill-
climbing search that will converge to a local maximum from an ini-
tial randomised HMM (using the MATLAB function hmmtrain). The
emission matrix can be initialised to a random incidence matrix with
a functional mapping from states to emission symbols (a single one
in each row). The transition probabilities it returns may be converted

into possibilities by mapping all positive probabilities > 0, to 1.
However, it seems wasteful to calculate the full transition matrix and
then discard the probabilities in this way. There is a further issue
with this approach. In addition to this wastage, graphs generated in
this way have more edges than necessary to capture the behaviours
in the training set, see figure 3 for an example.

An alternative edge-removal hill-climbing algorithm (see AP-
PENDIX A) is able to generate the adjacency matrix directly. The
intuition here is that we can begin with a matrix of ones, and then
knock-out the edges (flipping matrix elements from 1 to 0) at ran-
dom, subject to a check that this hasn’t eliminated the potential for
some observed behaviour. In fact, as the graph is not reflexive the
main diagonal can be knocked out from the start. At each step the
training set is consulted to ensure that all observed behaviours remain
a possibility. If the adjacency matrix fails the test, then the change
is reversed. This process continues until no more elements can be
changed without failing the test. As before, the emission matrix is
generated randomly and is held constant throughout. This produces
the leaner graph of figure 4.

Figure 4. This 6-state machine generated by edge-removal hill-climbing
captures complementary contexts of nodes emitting identical symbols, ‘P’.

To test that a state-machine can potentially generate a behaviour,
it must be treated as a non-deterministic finite-state-machine. At any
given time it can be in multiple states; all the states that it may po-
tentially have reached. In the initial configuration, any and all of the
states are a possibility. As each behavioural symbol is consumed,
some states are knocked out that cannot make that transition, and
others are added as all valid transitions are followed. If at any point
the state configuration is empty, then the state-machine fails the test.

For a given graph size, the edge-removal algorithm produces many
candidate graphs each with a different random emission matrix as a
starting point. How might we select among them? A measure is re-
quired that enables us to maximise the potential for cyclic behaviour.
With an autonomous system captured in this form it is possible to
carry out an analysis based on the number of walks that can be made
from any node back to itself. From a range of graph centrality mea-
sures, subgraph centrality [7] emphasises the cyclic, oscillatory pat-
terns of behaviour that are the hallmark of autonomy [1].

Subgraph centrality is based on the number of closed walks from



a node back to itself, a closed walk being a succession of edges start-
ing and ending at the same node. The number of walks of length k
between any two nodes in the graph can be computed by raising the
adjacency matrix to the power k, or Ak. Subgraph centrality [7] is
defined as the weighted sum of the closed walks of length k start-
ing and finishing at a given node. The subgraph centrality, SC, of
A for node i is defined in equation 1 below. To achieve convergence
a weighting of 1/k! is applied, with the effect that short walks have
more influence on the centrality of the node than long walks. The
subgraph centrality is equivalent to the diagonal entry of the matrix
exponential of the adjacency matrix, eA [8].

SC(i) =

∞∑
k=0

[Ak]ii
k!

= [eA]ii (1)

The Estrada index [4, 6] is defined in equation 2 below, to be the
sum of the elements of the subgraph-centrality. This is equivalent to
the trace (sum of the diagonal) of the adjacency matrix exponential.

EE = tr(eA) (2)

The natural connectivity of an autonomous system can be under-
stood as the degree of redundancy in the number of closed walks
from any node back to itself. If one walk should be unavailable, then
another may be taken in its place. The Estrada index grows quickly
for large numbers of nodes, so the natural logarithm of the averaged
Estrada index may be used as a measure of the natural connectivity
of a graph [11], defined in equation 3 below, where n is the number
of nodes (hidden states).

λ̄ = ln
(
EE

n

)
= ln

(
tr(eA)

n

)
(3)

The natural connectivity of the graph has the nice feature that it
changes monotonically with the removal (or addition) of edges[11,
16]. As the graphs produced by edge-removal have fewer edges than
those derived from the Hidden Markov Model, they have correspond-
ingly lower indices.

Figure 5. A 9-state machine generated by edge-removal with minimal
natural connectivity (min-connectivity).

During the edge-removal search, the natural connectivity index
falls monotonically with each edge removal. As this index is inde-
pendent of the emission matrix and depends only on the adjacency
matrix, it allows us to compare alternative solutions. It is worth re-
iterating that this gives us a measure of the robustness of an au-
tonomous system, without regard to its behaviour. The focus is en-
tirely on a system’s ability to maintain its organisation seen as a re-
curring process. Non-connected graphs are eliminated at this stage
as the Estrada index depends only on the Estrada indices of its con-
nected nodes [5]. Of all the remaining minimal graphs, it allows us to
discover the most robust solution with maximal natural connectivity.
The 6-state solution of figure 4 was found within 1000 independent
trials.

The interesting thing about the graphs of both figure 3 and fig-
ure 4 is that in both cases the search appears to have ‘discovered’
the underlying “EPNPE” cycle that occurs while the robot, ELSIE,
is orbiting around the light source. As her turret rotates it transitions
from a low light-level (E) while facing away from the light, through
an intermediate spike of medium level light (P), to bright light (N),
and then back again (P) as she veers away from the light. These state-
sequences are primarily a feature of her electro-mechanical construc-
tion, rather than her electronic circuitry. As two of the hidden states
map to ‘P’, more of the different contexts of these two ‘P’ emitting
states is captured in the graph.

Figure 6. A 9-state machine generated by edge-removal with maximal
natural connectivity (max-connectivity).

What does it mean in practice to maximise natural connectivity?
The edge-removal algorithm destroys a huge amount of robustness
and potential behaviour, so we’re working at the fringes with re-
source limited systems having a fixed set of states and only a minimal
number of state-transitions. What is the virtue of maximising natural
connectivity – retaining whatever potential the system has – rather
than further minimisation of natural connectivity at this stage? An
example of a graph with minimal natural connectivity (λ̄ = 0.3836)
is shown in figure 5. Call this the minimal graph. This is a graph
with 9 nodes mapping onto the same set of 5 behavioural patterns, so
we see more nodes mapped to the same output. Contrast this with the
9-node graph with maximal natural connectivity (λ̄ = 0.9059) in fig-
ure 6. There’s no discernible difference between the in or out-degree



of either graph. The minimal graph has mean in and out-degrees of
2.11 (they are the same), while the maximal graph has mean in and
out-degrees of 2.33.

The clearest difference between these graphs is in the number of
short-cycles evident in their structure. This should come as no sur-
prise as this is precisely what the Estrada index measures, and in-
deed it gives more weight to these shorter cycles. As we saw above,
the number of walks of length k between any two nodes in the graph
can be computed by raising the adjacency matrix to the power k, or
Ak. The trace ofA2 divided by 2 is the number of directed digons (2-
sided directed polygons in the graph), while the trace of A3 divided
by 3, is the number of directed triangles. The division is necessary be-
cause we can walk around the path starting at any of its vertices. The
tr(A2)/2 = 3 digons in figure 5, and tr(A2)/2 = 6 digons in figure
6, may easily be counted. The pattern doesn’t straightforwardly ex-
tend to squares as digons also produce 4-cycles. However, the Estrada
index is not concerned with whether such 4-cycles are generated by
squares or combinations of digons. Table 2 informally summarises
short 2, 3, 4, 5 & 6-cycles found in these examples of minimally
and maximally connected directed graphs. It can be seen that the
tendency in maximally connected graphs over minimally connected
graphs is towards these cycles. Both graphs are sufficient to produce
the observed behaviours in the training set, so it is plausible that the
reduced performance of the minimal graphs is due to over-fitting.

Table 2. n-cycles in minimally and maximally connected directed graphs.

graph tr(A2) tr(A3) tr(A4) tr(A5) tr(A6)
min-connectivity 6 0 22 20 72
max-connectivity 12 15 64 140 435

If we were to consider robot phenomenology, then this au-
tonomous system defines the world as seen from the robot’s perspec-
tive. It defines how the robot enacts the world. Of course, not any
behaviour goes; the autonomous system must be adapted to its envi-
ronment in a way that produces effective, or viable behaviour (sur-
vivability over some time-scale). However it does not simply embody
a model of its environment, but brings meaning to its environment
grounded in its physical, existential needs.

4 EXPERIMENTAL RESULTS
To validate the autonomous system against the symbolic data of
recorded test behaviours, we may evaluate the state-machines pro-
duced by the edge-removal algorithm against the test-set of be-
haviours. As in the algorithm itself, we test for the possibility that
all sequences could be produced by the state-machine. This gener-
ates a binomial distribution of machines that either pass or fail the
tests. we can plot the data in a bar-chart assigning the data to one of
ten bins based on the natural connectivity score. If we count a pass
as +1 and a fail as -1, and sum all the entries in each column we will
see the bar rise above zero if there are more passes on balance, or
it will drop below the zero line if there are more failures. If natural
connectivity has no bearing on this then we would expect the passes
and failures to be evenly distributed. However, the distribution is far
from even as can be seen in figure 7 a representative example based
on an 8-state machine. It looks like the machines with minimal nat-
ural connectivity are over-fitted to the data, while there’s a window
for those machines at the top end with maximal natural connectivity
– greater redundancy – to pass; accounting for both the training data
and the test data.

Figure 7. Bar-chart of the natural connectivity of an 8-state machine,
plotted against the summed binomial data (±1) representing a pass/failure to

account for the test data. This shows an uneven distribution that tips from
overall fail to overall pass around a natural connectivity of 0.81.

This pattern holds for all the graphs explored between 6 and 10
nodes, although the turning point between overall pass/fail varies.
These values present as the curve in figure 8 asymptotically ap-
proaching a value around a natural connectivity of 0.78.

The hypothesis is that there is a correlation between the natural
connectivity of an autonomous system, and the corresponding suc-
cess rate when evaluated against the test set of behaviours. It isn’t
immediately obvious that this should be the case, as natural connec-
tivity is a function only of the graph topology. We are really asking if
the qualitative features of the graph favoured by natural connectivity
lend themselves to good discrimination when it comes to testing.

Figure 8. Curve of the tipping point from overall fail to overall pass as we
explore machines with increasing number of states.



For each of the graph sizes between 6 and 10 nodes, the data was
subdivided into two bins at the threshold defined by the curve in fig-
ure 8. We want to confirm that the binomial distributions are dif-
ferent; those below the threshold being predominantly failures, and
those above, predominantly passes.

For each of the given graph sizes, 10K independent trials of the
edge-removal algorithm are used to produce a state-machine, many
of which are eliminated because they do not have a connected graph.
The remaining machines are tested and assigned to the appropriate
bin depending on whether they passed or failed. A Chi-squared test
is applied to evaluate how likely it is that the observed differences
between these two populations arose by chance.

The Null Hypothesis, H0, is that there is no difference between
the two populations. For a range of networks explored, from 6 nodes
to 10 nodes, the p-value is very close to zero, far less than a signif-
icance level of 5% (0.05). We therefore reject the Null Hypothesis
and conclude that there is a significant difference between graphs
with high natural connectivity (loopiness) and those with lower nat-
ural connectivity. Graphs with high natural connectivity appear to
avoid over-fitting due to their built-in redundancy.

5 CONCLUSION
This paper explores the use of state-machines to capture operational
models of autonomous systems. It explores the relationship between
a sequential symbolic representation of a robot’s behaviour, and an
operational representation – a state-machine – that may be used to
produce such a behaviour. We have explored a centrality measure
on the graphs underlying such a state-machine model and found
that natural connectivity measures the kind of loopy behaviour we
would associate with an autonomous system. An edge-removal hill-
climbing algorithm in conjunction with a natural connectivity mea-
sure of graph structure allows us to derive an adjacency matrix rep-
resentation of the state-machine from observed data, minimising the
chances of over-fitting to the training data. The surprising thing is
that this final selection of candidates is made purely on the basis
of the graph topology without regard to the training data; in other
words, purely on the basis of its operational closure rather than input
or output.

6 APPENDIX A: edge-removal algorithm
edge_removal(trials)

score = 0

for i = 1:trials
a = ones matrix - leading diagonal
e = random emission matrix (single 1 on each row)
x = indices of ones in a
while x is not empty

i = index drawn from x
a[i] = 0
if all observations can be generated by a,e

x = indices of ones in a
else

undo change to a
x = x - i

% natural connectivity
n = log(trace(expm(adj))/m)
if n > score and a is connected graph

adjacency = a
emission = e
score = n

return adjacency, emission, score
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AI-Generated Music: Creativity and Autonomy 
Caterina Moruzzi1 

 

 
Abstract. In this paper I discuss the impact of AI on one of the 
key topics in the philosophy of art: the nature of musical works. 
The question I will address is the following: ‘Can a computer 
create a musical work?’. Due to its complexity and subject-
dependency, the concept of creativity eludes an objective 
definition and quantification. With the aim of finding a non-
arbitrary way of measuring creativity, in section 2 I individuate 
autonomy as a necessary feature exhibited by creative processes. 
In section 3, I investigate the case study of the generation of 
music by a new model of generative algorithms: Generative 
Adversarial Networks (GANs). I claim that the use of GANs in 
music composition may grant the software a sufficient level of 
autonomy for deeming it able to create musical works. In 
addressing the inherent difference of GANs from other kinds of 
software used in algorithmic composition, I will borrow some 
insights from the discussion on Integrated Information Theory. 
In section 4, I discuss the quantity of integrated information, or 
Φ (‘phi’), that a system for music generation which makes use of 
GANs may possess and what this tells us about its levels of 
creativity2. 

1 INTRODUCTION 
The last decades witnessed an exponential proliferation of AI 
music composition programs. The hard-coded algorithmic 
composition systems of the outset are progressively giving way 
to a more advanced use of neural networks and Deep Learning 
software, with a consequent increase of the sophistication and 
quality of the music produced. The Mozart and Lady Gaga of the 
future are a set of silicon chips: Jukedeck, Flow Machines, Aiva 
and other programs are gaining more and more followers in 
many music platforms, raising a growing enthusiasm and 
consent among their fans. While the latest developments in the 
field of AI-generated music are matter of excitement among both 
listeners and researchers, they also raise less practical and more 
philosophically oriented questions. In this paper I discuss the 
impact of AI on one of the key topics in the philosophy of art: 
the nature of musical works. The question I will address is the 
following: ‘Can a computer create a musical work?’. The answer 
that we give to this question is interesting not only from a 
philosophical and theoretical point of view. Indeed, it carries 
also relevant consequences for considerations regarding 
copyright and intellectual property and, in addition, it can give 
us some insight into the nature of human creativity itself3.  

Before I can move on to the consideration of whether an 
algorithm can be deemed creative, I need first to define what 
creativity is. This is what I aim to do in the first part of the paper. 
In the literature, many definitions of ‘creativity’ have been given 
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but none of them emerges as the paradigmatic one that can be 
employed in all fields and disciplines. My scope in this paper is 
not to overturn existing approaches to creativity, but instead to 
suggest possible avenues of exploration that may be beneficial 
for an understanding of human creativity. This will hopefully 
help the development of better software and of a smoother and 
more effective interaction between humans and machines. I will 
define creativity as a process which is necessarily autonomous. 
As I will explain in more detail, this is a minimal definition but it 
serves the scope of trying to find an objective measure for 
creativity in order to move on to the study of its many other 
characteristics.  

In section 3, I investigate the role that the notion of autonomy 
plays in software for music composition. In particular, I examine 
a generative model for music generation: Generative Adversarial 
Networks (henceforth GANs) [23]. The process of creation 
undertaken by GANs displays a level of autonomy from pre-
existent sets of data which is noticeably bigger in respect to other 
generative algorithms. Hence, I argue that GANs are a good 
candidate for being deemed creative. I focus on software for 
music-generation, since music involves a wide range of bodily, 
contextual, and technological aspects in which creativity is 
involved. At the same time, it is a particularly challenging field 
for algorithmic composition due to its temporal dimension and 
its multi-layered complexity. The focus on music generation 
does not prevent us from extending the results of this research to 
the analysis of other fields of application of creativity, though. 

In the last part of the paper, I tentatively suggest a way to 
objectively measure the amount of creativity possessed by 
generative models, borrowing some insights from the discussion 
on the measurement of consciousness proposed by the Integrated 
Information Theory (IIT) [50]. This theory argues that the more 
a system is integrated, the more consciousness it possesses. I will 
discuss the quantity of integrated information, or Φ (‘phi’), that a 
generative model for music composition may display and what 
this tells us about its creativity. 

The period we are living provides us with exciting material 
and opportunities to research on the topic of creativity. I am 
confident that gaining insight into artificial creativity can yield 
some other, more encompassing, results regarding how the 
human mind works and how we can enhance its performance 
through the collaboration with technology. 

2 CREATIVITY AS AUTONOMY  
The topic of creativity raised the interest of many scholars in 
different fields. However, discussions on creativity usually end 
leaving participants even more confused on what the nature of 
creativity is. This is partly due to the fact that creativity is 
defined differently by people working in different fields.  

Artists normally deem creativity as a property of ‘genius’ that 
only some people seem to possess, at least at its more 
distinguished level [1]. Computer scientists, for their part, 
consider creativity as something that can be recreated through an 
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algorithm and they usually place more relevance on the final 
product rather than on the process that leads to it [8, 13]. 
Cognitive scientists look for neural correlates of creativity in the 
brain and try to understand the mechanisms underlying it [22, 
47]. Philosophers conduct a meta-study of what researchers in 
other fields say about creativity. As a consequence, they describe 
creativity in a variety of ways: as a property of a process, a 
property of a product, an emergent entity, etc [40].  

From this quick overview, it is clear that there is no consensus 
on what creativity is. The first step we need to take in the 
investigation on the nature of creativity is thus trying to shed 
light on the issue. Machine learning is achieving impressive 
results also in fields which were before considered as exclusively 
human, such as creative arts, but some people question the 
possibility of mechanising a human process that we do not fully 
understand [33]. The field of neuroscience is in constant 
development but we do not have a clear explanation of what is 
going on in the human mind when we undertake a creative 
activity yet.  

In this paper I do not have the presumption of providing a 
definite answer on what creativity is, nor to indicate its neural 
correlates or the way in which to replicate it in an artificial 
substratum. Rather, my aim is to pave the way for one possible 
interpretation of creativity which may hopefully lead to 
interesting results if pursued further. 

We arguably share the intuition that creative processes present 
something special in respect to other, more mundane, activities. 
This special feature of creativity has been interpreted in different 
ways, as value, originality, intentionality, etc. [3, 5]. Finding out 
which are the essential characteristics that make up the nature of 
creativity is the end result that I want to obtain. Thus, I am not in 
the position of stipulating at the beginning what these ‘special 
features’ are. Instead, I provide a minimal account of the creative 
process which is intended as a baseline, a way to determine the 
primary nature of creativity in order to proceed in the 
investigation and refine our picture of creativity as we gain more 
insights on it.  

I suggest that creativity is the property of a process which is 
necessarily autonomous. The choice of focusing on the creative 
process instead of the product is motivated by the need to try and 
achieve a view on creativity which is as objective as possible. 
Addressing out attention to the product that originates from a 
creative process, does not provide us with any insight regarding 
how creative thought originates or what it entails [54]. The 
consideration of a product as creative is not objectively 
measurable but, rather, it depends on how we perceive it and on 
a series of contextual factors [14, 18]4.  

I believe that the exploration of the mechanisms underlying a 
creative process may instead be more liable to an objective 
investigation. As I understand it, the creative process is not 
necessarily individualistic. The Romantic notion of creativity 
that permeates our conception of it obscures a more communal 
idea of creativity. Creativity is a process that can be performed 
with the collaboration of and influence from other people and 
contextual elements. Most importantly, creativity is not 

                                                
4 The subject-dependence of the notion of creativity as applied to a 
product is also the reason why the Turing Test is deemed by many a non-
reliable measure of creativity [57, 9, 3]. 

exclusive of an elite of ‘geniuses’ but it is common to every 
human, in various degrees5. 

I defined the process of creativity as ‘necessarily 
autonomous’. Autonomy is widely recognised as an essential 
property of creativity [9, 15, 30, 31]. However, autonomy can be 
variously defined as the generation of inner goals [30], the 
ability to respond to known and unknown inputs [7], or the 
freedom to generate ideas [16]. A possible concern is that 
autonomy is too strong a requirement for a process to be 
creative. Also humans, in fact, are not completely autonomous 
but instead constrained by their body, social context, the tools 
they use, etc. In this paper, I understand autonomy not as 
complete freedom but as not being completely reliant on a given 
set of data [31].  

In the case at issue, thus, creativity is understood as an 
autonomous process of creation of an output which is not limited 
to the imitation of a given corpus of music. I pre-empt a possible 
objection here: also human musicians rely, to a certain extent, on 
a set of data and instructions. I grant this is the case, however, 
once the learning stage is complete, the process of creation may 
lead in directions which depart from the training set. This is the 
kind of autonomy I refer to when analysing the possibility for a 
software to be creative.   

A last specification regarding autonomy is needed. It is 
possible to have agency without displaying autonomy [26]. As 
defined by the Oxford English Dictionary, agency is an ‘action 
or intervention producing a particular effect’. It is thus possible 
for an algorithm to have agency, namely to have an effect, 
without being autonomous. This distinction is essential for 
determining the difference between computer-assisted and 
computer-generated music. In computer-assisted music, the 
software does not necessarily need to be autonomous, but instead 
it needs to have agency and provide a contribution to the final 
outcome [24, 25]6. Despite the fascination of the field of human-
AI collaboration in music production, in this paper I am 
interested in the more radical case of computer-generated music. 
In this latter instance, computers do need to display autonomy, 
and not only agency, in order to be deemed creative. 

In the Introduction I anticipated that I would have focused on 
a particular instance of generative software: GANs.7 The reason 
for exploring this model instead of others is that I believe their 
process of creation is inherently different from other software for 
music generation. As I will explain, the interplay between 
generator and discriminator in the structure of GANs grants the 
process of creation a considerable level of autonomy from the 
training set. GANs have already reached noticeably better results 
than other algorithms in the field of visual arts.8 The application 
to music is more recent and, due to the complexity of musical 
structures I mentioned earlier, the outcomes obtained are less 

                                                
5 I will not enter the debate of whether also animals are capable of 
creativity here. For a discussion on this theme, see [27]. 
6 See also [55] for a discussion on joint-authorship and the necessity to 
define creativity to determine the ownership of copyright in the case of 
human-AI interaction in the generation of music.  
7 For an extensive overview on algorithms for music generation, see [38]. 
For GANs, see [23]. 
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sophisticated. However, I believe that, with future developments, 
GANs will be able to obtain impressive results in music, 
comparable to the ones they already achieved in visual arts. 

 

3 GANs AND CREATIVITY 

Generative models are algorithms developed with the aim of 
analysing and understanding data from a pre-existent set. Given 
a label or a hidden representation, they can predict the associated 
features and generate new data similar to that provided by the 
training set. Generative algorithms have been mainly used for 
the classification and generation of images but recently they 
started to be applied also to the generation of music [16, 19, 58].  

Generative Adversarial Networks (GANs) have been 
introduced in 2014 as a new kind of unsupervised generative 
algorithm [23]. GANs are composed of two neural networks: a 
generator and a discriminator. The generator has the role of 
originating new data instances, while the discriminator evaluates 
them for authenticity. This model is defined as ‘adversarial’ 
because generator and discriminator are pitted one against the 
other in what Goodfellow describes as a game of cat and mouse: 
‘The generative model can be thought of as analogous to a team 
of counterfeiters, trying to produce fake currency and use it 
without detection, while the discriminative model is analogous to 
the police, trying to detect the counterfeit currency. Competition 
in this game drives both teams to improve their methods until the 
counterfeits are indistinguishable from the genuine articles.’ [23: 
1] 

The aim of the generator is to fool the discriminator into 
thinking that what has been produced is a sample which is part 
of the training set. The aim of the discriminator is to catch the 
generator out any time it produces a fake sample. The two neural 
networks, generator and discriminator, are trained 
simultaneously in a minimax two-player game, in a competition 
to improve themselves. The ideal solution is that the 
discriminator always outputs the chance 0.5 that the input 
coming from generator is real. This would mean that the 
generator has learnt to produce output indistinguishable from the 
training samples and that the discriminator is not fooled into 
thinking that it is false but leaves instead open the possibility it 
can be either authentic or fake.  

The main focus of GANs is to generate new data from scratch 
which is indistinguishable from the data in the training set. The 
generator alone would create just random noise. The role of the 
discriminator is to guide the generator, providing feedback to 
create data instances that look (or sound) like the training 
samples. The feedback loop occurring between generator, 
discriminator, and data set is what allows both the generator and 
the discriminator to improve their performance9.  

The mechanism applied by GANs for generating new images 
and new music is fundamentally the same. In the case of music 
random noise is used as the input to the generator, whose output 
are melodies [9: Chapter 5]10. Another model which is frequently 
used for music generation is Recurrent Neural Networks 
(RNNs). RNNs are neural networks which learn a series of items 
thanks to recurrent connections. In this way ‘the RNN can learn, 
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10 I will come back to the discussion on the quality of music generated by 
GANs in section 3.3. 

not only based on the current item but also on its previous own 
state, and thus, recursively, on the whole of the previous 
sequence. Therefore, an RNN can learn sequences, notably 
temporal sequences, as in the case of musical content.’ [9: 65]. 

The capacity of RNNs to learn sequences has made them one 
of the preferred models to generate a temporal output such as 
music. As I will discuss in section 3.3, RNNs produce arguably 
better results than GANs [11]11. However, their structure is 
inherently different. The inner feedback loop present in GANs 
provides them with an autonomy which is not available to other 
models. The fitness function (a score to evaluate how close the 
output comes to meeting the specification of the desired 
solution) in GANs can indeed come from within the system, not 
from external feedback [10]. The interplay between generator 
and discriminator is what distinguishes GANs from other 
algorithmic models and, from it, two major benefits emerge: (1) 
the capacity of GANs of self-evaluation, and (2) their relative 
autonomy from a pre-existing set of data. I will examine each of 
these benefits in turn. 
 
3.1 Self-evaluation in GANs 
 
Self-evaluation, namely the capacity of making normative 
judgements regarding the output we produce, has been indicated 
by some as an essential feature for creativity [21]. When 
engaging in a creative process, we normally reflect on what we 
produce and try to improve according not only to the feedback 
that we receive from the outside but also according to the inner 
feedback we provide ourselves with. Self-evaluation is a process 
that calls into questions many other activities and properties of 
our mind, like consciousness and intentionality. It does not 
surprise, then, that we intuitively struggle to ascribe self-
evaluation to artificial machines: ‘Although many generative 
models have become quite sophisticated, they do not contain an 
element of reflection or evaluation, and therefore might not 
necessarily be considered creative systems in their own right’ [2: 
2]. However, if we take away other, notoriously complex, 
notions such as consciousness and intentionality from the 
definition of self-evaluation, we can understand it as the capacity 
to improve the quality of the outputs based on the consideration 
of past performance.  

The feedback loop that represents a vital element of the 
architecture of GANs, can be interpreted as a self-evaluation 
process. The interplay between the generator and the 
discriminator, indeed, maps the human creative process of trial 
and error. What is especially relevant, is that this feedback 
mechanism happens within the GAN and does not involve 
external players. Interactive evolutionary computation 
traditionally makes use of human judges to gain evaluation in the 
cases in which a fitness function is not known or hard to 
determine (like in the case of aesthetic qualities in the arts) [21, 
45]. In these cases, the feedback here comes from the outside, so 
it cannot be classified as self-evaluation. In GANs, instead, the 
feedback comes from within. This, I argue, is a benefit that 
GANs have in respect to other algorithmic models, since it 
contributes to the overall autonomy of their process of creation 
and, hence, to their creativity. 

A potential objection may be raised here: GANs are not really 
autonomous because they rely on a pre-existent training set. I 
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believe this argument is not against the autonomy that can be 
attributed to GANs. Indeed, also humans rely on a set of training 
data and instructions for every creative action they undertake 
[53]. What is relevant in order to attribute a certain level of 
autonomy to the system, is that it displays independence after the 
learning stage has been completed and during the process of 
creation. 

Lastly, there is another attribute of GANs that can vouch in 
favour of their creativity. The kinds of learning on which 
machine learning has focused so far are: rote learning, learning 
from instructions, learning by analogy, learning from examples, 
and learning from observation [46]. The most common kind of 
learning applied in generative models is learning from examples. 
I argue that the generator in GANs does more than simply 
learning from examples, it learns by doing [4]. The learning 
process of the generator in fact relies heavily on the competition 
it plays with the discriminator. It improves its performance by 
pitting against the discriminator and producing an output that is 
every time better than the last. This is similar to the process of 
learning also humans go through when engaging with a new 
activity or topic. Sure, algorithms still lack human-like 
embodiment, an element which plays an essential role in the 
human process of learning [29, 48, 54]. Yet, with the 
advancements in the field of robotics it is not excluded that they 
may achieve perceptual features and skills in the future. 

Self-evaluation and learning by doing have been individuated 
as two features of GANs which advocate in favour of their 
possibility of engaging in creative processes. In what follows I 
discuss a further benefit of GANs: their relative autonomy in 
respect to a pre-existent set of data. 
 
3.2 Autonomy from pre-existent corpus  
 
The majority of software for music composition is programmed 
to imitate the style of the music provided in the training corpus12. 
Imitation may not be deemed enough in order to recognise 
autonomous creativity to a system, though13. A recent evolution 
of GANs is trying to achieve the necessary detachment from the 
training set in order for its output to be not a mere imitation of 
the samples provided during the training stage, but instead a 
more autonomous creation. ADD This model, called Creative 
Adversarial Networks (CANs), aims to deviate from the training 
set and to create a new style: ‘The network is designed to 
generate art that does not follow established art movements or 
styles, but instead tries to generate art that maximally confuses 
human viewers as to which style it belongs to.’ [17: 5] The 
authors describe the mechanism of CANs by saying that it ‘tries 
to increase the stylistic ambiguity and deviations from style 
norms, while at the same time, avoiding moving too far away 
from what is accepted as art. The agent tries to explore the 
creative space by deviating from the established style norms and 
thereby generates new art.’ [17: 5]  

An interesting result of CAN is that, without human 
intervention, the algorithm deviated from the style norms of the 
training set to generate abstract paintings. This has been 
interpreted by the creators of CANs as a parallel between the 

                                                
12 For example, FlowComposer, DeepBach, EMI, COMPOSER, and 
GenJam are based on an imitation principle. 
13 Even though, it may be argued, also many human composers, at least 
to a certain extent, compose by imitating the music created by others.  

trajectory of human art history and the path undertaken by 
CANs: in both cases, the agents ‘opted for’ abstraction. 

How to define what a style is, is a challenge in itself [32]. For 
the sake of this discussion, I understand a style as a recognisable 
pattern which is replicated in subsequent instances and which 
has elements of uniqueness. This definition is undoubtedly vague 
and open to criticism14. My aim here is not to determine what 
can be identified as a style, though. Instead, I wish to 
acknowledge the fact that the production of output which 
displays certain uniform characteristics which make it 
distinguishable from other instances (what I define a ‘style’) can 
be interpreted as a measure of creativity of a system. 

The creation of a new recognised style has not been achieved 
by CANs, yet. However, I argue that CANs are on the right track 
to develop a system which is increasingly autonomous from pre-
existent corpus of data and from external feedback and, thus, 
which can arguably display the essential features for a system to 
be deemed creative.  
 
3.3 Limitations of GANs 
 
GANs brought about a revolution in generative algorithms, 
allowing to achieve results that were unthinkable before. 
However, they are not exempt from criticism, mainly for two 
reasons: they are very hard to train and (in the generation of 
music) they produce worse results than other algorithmic 
models. 

Training GANs requires finding a Nash equilibrium between 
generator and discriminator15. However, GANs are usually 
‘trained using gradient descent techniques that are designed to 
find a low value of a cost function, rather than to find the Nash 
equilibrium of a game.’ [42: 1] As a consequence, training is 
often unstable16. The interplay between generator and 
discriminator, the feature that constitutes an advantage for GANs 
and their creativity, also causes its difficulties in the training 
stage. Various solutions have been proposed to face the 
difficulty of training GANs but none of them seems to be 
particularly successful17. 

A second difficulty that GANs face in their application to the 
generation of music is the arguably poorer quality of their output 
in respect to other algorithms for music generation. For example, 
RNNs, the other model for music generation I mentioned, are 
able to produce music which displays a more consistent structure 
and a melody which is easier to follow and better balanced than 
GANs18. Nevertheless, I argue that this does not diminish the 

                                                
14 A concern related to the definition of ‘style’ is the fact that, as the 
notion of creativity, also the notion of style can be partly subject-
dependent. Moreover, a question that can be asked is whether a style 
needs necessarily to be ‘intentional’, namely if an agent needs to have 
the intention of creating a style or whether it can happen by chance.  
15 In game theory a Nash Equilibrium happens when one player will not 
change its action regardless of what the opponent might do. In this case 
the two players are generator and discriminator. 
16 Other difficulties in training GANs include the problem of vanishing 
gradient and mode collapse. For technical details, see [10, 39, 42], and 
https://medium.com/@jonathan_hui/gan-why-it-is-so-hard-to-train-
generative-advisory-networks-819a86b3750b.  
17 They include techniques such as minibatch discrimination [42], 
DCGANs [41], and Wasserstein distance [16]. 
18 Examples of music composed with RNNs can be found at: 
https://magenta.tensorflow.org/performance-rnn, 
http://www.hexahedria.com/2015/08/03/composing-music-with-
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level of creativity that we can recognise to GANs. In fact, as I 
stated at the beginning, creativity needs to be measured on the 
basis of the process, not on the basis of the quality of the 
product. 

Human evaluation has been extensively employed to judge the 
level of creativity or the quality of the output of genetic 
algorithms for music generation [16, 17, 28, 42]. However, 
having a human feedback on the creativity of the system might 
be useful to improve the system itself but, I argue, it is not useful 
to investigate the notion of creativity. The interpretation of the 
quality and creativity of an output is subjective and depends on a 
series of personal and contextual factors [57]. Moreover, the 
quality of an output is not dependent on the creativity of the 
process that led to its creation. If an art student produces a 
drawing whose quality is worse than the quality of a drawing by 
a professional artist we would not question the creativity of the 
art students but, rather, her lack of experience or technique. 
Similarly, we cannot judge the creativity of an algorithm on the 
basis of the quality of its output. 

In the next section, I tentatively suggest a way to measure the 
creativity displayed by GANs. In order to do so, I will use the 
tools provided by the Integrated Information Theory of 
consciousness.  

4 INTEGRATED INFORMATION THEORY 
TO MEASURE CREATIVITY 
Integrated Information Theory (IIT) was proposed by Giulio 
Tononi in 2004 as a theory to explain and measure 
consciousness [49] It is described as ‘an evolving formal and 
quantitative framework that provides a principled account for 
what it takes for consciousness to arise, offers a parsimonious 
explanation for the empirical evidence, makes testable 
predictions and permits inferences and extrapolations.’ [52: 5] 

In this section I suggest that we can use the tools offered by 
IIT to explore the possibility of finding an objective measure to 
creativity. I argue that this is possible given the link that occurs 
between consciousness, intentionality, and creativity. I start with 
the assumption that intentionality and consciousness are 
interconnected [3, 37]. Creativity is linked to consciousness as it 
is recognised as involving both conscious and unconscious 
processes of the mind [56]. Moreover, intentionality has been 
individuated as an essential feature of creative activities by many 
[3]. An agent necessarily needs to intentionally engage in an 
activity for this activity to be considered creative. Given the 
connection existing between these three concepts, I believe that a 
study on the nature of consciousness can yield some results also 
in relation to the nature of creativity.  

One of the difficulties that I highlighted at the beginning 
regarding the study of creativity is its subject-dependent nature 
which eludes an objective measure. The possibility of 
quantifying consciousness offered by IIT may provide us with 
the instruments to bypass this obstacle and acquire a neater 
understanding of the nature of creativity.  

                                                                             
recurrent-neural-networks/ and http://people.idsia.ch/~juergen/blues/. 
Examples of music composed with GANs can be found at: 
http://mogren.one/publications/2016/c-rnn-gan/ and 
https://salu133445.github.io/musegan/results. 
 
 

IIT proposes a set of axioms and postulates to define what 
consciousness is. Consciousness is described as existent, 
structured, specific, unified, and definite [52]. The two attributes 
of consciousness that mostly interest us in the context of this 
discussion are ‘specific’ and ‘unified’. ‘Specific’ refers to the 
cause-effect structure displayed by a system. This represents the 
‘information’ part of IIT: ‘information refers to how a system of 
mechanisms in a state, through its cause–effect power, specifies 
a form (‘informs’ a conceptual structure) in the space of 
possibilities.’ [52: 8] 

‘Structure’ refers instead to the intrinsic irreducibility of the 
system, which can be measured through the mathematical 
quantity Φ (phi): ‘a conceptual structure completely specifies 
both the quantity and the quality of experience: how much the 
system exists — the quantity or level of consciousness — is 
measured by its Φmax value — the intrinsic irreducibility of the 
conceptual structure; which way it exists — the quality or 
content of consciousness — is specified by the shape of the 
conceptual structure.’ [52: 9]  

The more the parts of a system are interconnected, the higher 
the phi. A high level of information means that the cause-effect 
powers of a system specify ‘which out of a large repertoire of 
potential states could have caused its current state.’ [51: 300] 
High integration means instead that ‘the information generated 
by the system as a whole is much higher than the information 
generated by its parts taken independently. In other words, 
integrated information reflects how much information a system’s 
mechanisms generate above and beyond its parts.’ [51: 300] 
Consciousness is a fundamental quantity, just as mass, charge, or 
energy [50: 233]. The consequence presented by IIT is that every 
system which is minimally specific and unified, possesses a 
degree of phi and, hence, is conscious [50: 236] 19. 

I argue that the inner structure of GANs is a good candidate 
for presenting an appreciable amount of phi. As mentioned, phi 
is measured according to how much a system can have an 
intrinsic cause-effect architecture and how much integrated 
information it presents. The interplay between generator and 
discriminator in GANs, and the feedback loop that allows them 
to improve their performance, constitutes a cause-effect structure 
which has powers both within and outside of the system. The 
integrated information of GANs derives from the causal 
interaction between the components of the system and from their 
level of irreducibility20. 

Consciousness in IIT is attributed to re-entrant systems. On 
the other hand, a feed-forward system that performs in the same 
way as a conscious human would only simulate consciousness, 
not realise it [20]. This is consistent with the idea expressed 
throughout this paper that creativity can be identified in the 
process rather than the product. No matter how similar a musical 
piece composed by an algorithm is to a piece composed by a 
human, if the process followed by the algorithm to generate it is 
not integrated and autonomous, it cannot be deemed creative.  

                                                
19 For other, more technical details on IIT, see [49, 50, 51, 52]. 
20 IIT as applied to GANs can also be used to judge whether humans, 
whose causal power is represented by the training set and possibly by 
external feedback, are a necessary components of the system. Φmax 
calculates to what extent the cause-effect structure of a system changes if 
the system is partitioned. The level of phi can, thus, be calculated with 
and without the human component to check which is the maximally 
irreducible section of the system with the highest level of phi. 
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What I presented in this section is a tentative suggestion on 
how to use tools provided by a neuroscientific theory to achieve 
a better understanding of creativity. However, this research is not 
free from difficulties. Measuring phi is very hard, as immense 
computational power is required to calculate all the relations 
within the cause-effect structure of a network. Despite this 
difficulty, calculating phi may turn out to be an achievable task 
as the computational power of computers is increasing 
exponentially over time. Either way, I am confident that the 
application of the theoretical framework offered by IIT may 
prove to be extremely beneficial to the study of a central feature 
of the human mind, creativity, and of its potential replication on 
artificial substrata.  

5 CONCLUSIONS & FUTURE WORK 
In this paper I discussed the question of whether algorithms for 
music generation can be deemed creative. I analysed GANs as a 
case study and I concluded that, thanks to their relative 
autonomy from a pre-existent set of data and to their capacity of 
self-evaluating their performance through a feedback loop 
between generator and discriminator, they are a good candidate 
for being considered, at least minimally, creative. In the last 
section of the paper I tentatively suggested to use the tools 
provided by the Integrated Information Theory of consciousness 
to measure the creativity that can be displayed by a system. Also 
in this case, given the causal power exercised by the inner 
components of GANs and their interconnection, I proposed that 
they may exhibit a considerable level of phi, and thus of 
creativity. 

In this concluding section, I wish to indicate a domain in 
which the results obtained from it can play a significant role and 
possible developments of this research. 

First, it should be noted that the investigation on creativity is 
not limited to the field of the arts. Creative processes are 
common to many other disciplines, from technology, to 
scientific discovery, to social creativity [48]. Achieving a better 
understanding on what creativity is can be especially beneficial 
for discussions in relation to copyright and intellectual property. 
Legal considerations on authorship need to address the question 
of what is required in order to get copyright authorship. Together 
with originality and novelty, creativity is a feature that is deemed 
necessary by law in order to recognise a product as worthy of 
copyright protection [8]. The problem is that creativity has not 
been fully defined by copyright law [8, 55]. This vagueness 
leads to significant uncertainty especially when addressing the 
issue of creativity in AI. In the last years there have been many 
cases of human-AI collaboration in the generation of music. 
What needs to be established, then, is the role played by those 
contributing to the final product: human musicians, 
programmers, and the software itself. An informed discussion on 
creativity in AI and on the autonomy of AI agents in respect to 
humans may help settle the issue of joint authorship and 
copyright [55]. 

I conclude by pointing out a further line of research that may 
emerge from the discussion conducted in this paper regarding 
creativity and AI. I start with a provocation: even if AI could 
reproduce the human creative process in music and generate a 
creative music product, exactly as a human musician (composer, 
performer, improvisor) would do, we still would (intuitively) 
struggle to define this AI creative and to define its products as 

valuable as products of human creativity. Either this intuition is 
correct, and human creativity presents some special feature that 
machines cannot share, or our intuitions are incorrect and we are 
inherently biased in assessing the possibility for machines to 
undertake creative acts and originate creative products.  

In order to explore which one of these two options applies, it 
could be useful to conduct behavioural experiments to test 
listeners’ intuitions and biases towards machine creativity. 
Experiments on listeners’ reception of AI-generated music and 
on listeners’ biases have already been conducted [12, 35]. 
However, what I propose would be more beneficial is to conduct 
‘disclosed’ experiments where participants know about the 
artificial provenance of the music and are fully informed about 
the process that leads to its creation. I already mentioned the 
criticism that has been moved against the validity of Turing 
Tests [3]. I agree that in this context, since what needs to be 
investigated is the process of creation and not its products, a 
Turing Test would not serve our purposes.  

The research I presented in this paper and the further 
examinations that can be conducted will hopefully contribute to 
answering the question regarding creativity in AI systems. Yet, 
an even more important result that may derive from this research 
would be gaining a better understanding of the mechanisms of 
human creativity, a field still prevalently obscure and full of 
unanswered questions.  
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Artificial Intelligence, untapped insights, and Creativity
Oliver Hoffmann1

Abstract. The current boom of Artificial Intelligence (AI) is chang-
ing the way people work and live. But AI research can inform phi-
losophy in more ways than just offering grounds for reflection on the
impact of its technologies. Over more than six decades, AI engineers
have attempted to demonstrate the validity of ontological and epis-
temological views by creating machine intelligence. What have we
learned from these efforts? And how could empirical evidence from
AI research help in advancing our understanding of creativity?

1 Artificial Intelligence as Empirical Inquiry
Which AI approaches have worked, which have failed and what can
their success, failure or unexpected results tell us about underlying
philosophical stances? Each of the three waves of AI research was
based on specific predictions and each of the two AI winters between
them was caused by frustration with the validity of these predictions.
Will the current wave of AI research fare better?

From an engineering point of view, failure is just a temporary ob-
stacle on the way to eventual success. But from a scientific and philo-
sophical point of view, failure provides the most valuable source for
understanding and progress [14]. Outright failure may be rare, but
the majority of AI research has encountered persistent limitations to
the feasibility of its approaches.

AI researchers have repeatedly claimed that their type of research
should not be held accountable to traditional standards of scientific
research because they are not investigating nature but creating some-
thing new [20]. Based on this conviction of exceptionalism, they
chose to ignore recent developments in philosophy even if these de-
velopments should have been cause for serious reconsideration of
their approaches.

The field of AI or what was later called Good Old Fashioned AI
(GOFAI) [6] was for example originally founded on essentially the
same kind of logical atomism proposed by Russell [17] and elabo-
rated on in Wittgenstein I [22], while ignoring the concerns raised
in Wittgenstein II [10]. The founding document of AI research [11]
is based on logical atomism without checking for its validity or
even discussing it explicitly at all. Ten years later, AI researchers
attempted to translate this underlying philosophy into the form of
the physical symbol system hypothesis [13]. The entire field of AI
research, they claimed, constituted the empirical test of this hypoth-
esis.

Has the hypothesis been verified or falsified by now? We don’t
know. AI researchers did not offer definitive validation criteria. The
only indirect means of verification might have been the creation of
human-level intelligent systems [8].

When their research ran into problems, AI researchers reacted
more like engineers than like scientists. Rather than discarding hy-

1 Federal Ministry for Transport, Innovation and Technology, Austria, email:
oliver@hoffmann.org

potheses, they worked hard on reaching their original goal and tried
various alternative approaches. In the absence of shared validation
criteria, the research field developed an internal conflict over what
should be considered the best type of knowledge representation.
Again, the conflict was not resolved by testing the validity of spe-
cific types of knowledge representation individually. Instead, the en-
gineering character of AI research was confirmed by declaring the
choice of knowledge representation irrelevant. Only the overall in-
telligence of the computing system matters, independent of which
symbols are used for programming it, the knowledge level hypothe-
sis [12] claimed.

When AI researchers published their results, their focus was typi-
cally on the technologies they had developed. But they only accepted
their core research hypotheses to be validated by the eventual success
at creating intelligent robots. So they proceeded to offer predictions
of the arrival of human-level AI. But these predictions invariably
failed. For more than half a century, AI researchers have displayed a
tendency for perpetually predicting the arrival of human-level AI [8]
in ”about 20 years from now” [1]. 63 years after the inception of AI
research, they are still pushing the predicted date to just after the end
of the current funding period or after their personal retirement age.

As a result of this engineering culture, there has been progress
in developing a technology or rather a set of technologies. Progress
in AI technologies such as Deep Learning [9] is the reason for the
current hype in AI startup funding and the continuation of research
and research conferences such as this one. But AI technologies were
not meant as an end in themselves. They were meant as a means
to an end. Today, the end might appear to be developing disruptive
business models. But the research field of AI was established for un-
derstanding something. AI researchers wanted to demonstrate some-
thing concerning the nature of intelligence. And by doing that, they
embarked on an implicit journey for validating some very specific
philosophical views.

2 Philosophical Reception of Artificial Intelligence

Even before the inception of AI research, proponents of machine in-
telligence were making broad claims on the nature of consciousness
and thought. With his imitation game, Alan Turing challenged the
criteria we apply for judging machines [21]. Once the actions of ma-
chines are indistinguishable from the actions of intelligent humans,
we might as well consider that these machines are thinking, he ar-
gued. Today, some chatbots might already pass the Turing Test in
some configuration. But does that mean that these chatbots are think-
ing? Did the progress in AI technologies change our answer to this
question? Probably not. At least not directly.

People were able to imagine something like chatbots long before
AI research started. Whether they would consider such machines
possessing the quality of thought was independent of the actual exis-



tence of such machines. It still is. We can certainly learn something
from the fact that it was possible to create chatbots at all. But that’s
a long way from assigning the quality of thought to them.

63 years ago, AI research was initiated to demonstrate that “com-
puters can be programmed to simulate the human brain and human
thought”. AI was meant to prove that “every aspect of any feature of
intelligence can be so precisely described that a machine can be made
to simulate it”. Once AI was created, this would have verified that in-
telligence would in fact be nothing else than computation. These are
all claims based on a speculated eventual result. And since they are
claims concerning key philosophical questions, philosophers started
to engage with them.

John Searle offered what is probably the most prominent example
of a philosophical answer to AI research. Even if it were possible to
create a true AI system passing the Turing Test, such a system should
still not be assumed to possess a mind or understand the meaning of
its symbols, he argued [18]. Both arguments in favor of this view and
opposed to this view are as valid now as they have been decades ago.
We still don’t have human-level AI. And we are still discussing the
philosophical implications of what the creation of human-level AI
might imply.

The failure of creating intelligent robots has not discouraged AI re-
searchers from engaging in these speculations. On the contrary. They
have doubled down on their predictions and are now speculating on
the rise of artificial superintelligence, which will supposedly trigger
unfathomable changes to human civilization. Currently, philosophers
such as David Chalmers are discussing what such a technological sin-
gularity might entail [2]. But since this is all based on a speculation
of a potential result, we might as well have had the same discussion
63 years ago. None of the empirical evidence from 63 years of AI
research can be used to validate these speculations. So what can we
learn from all of this effort?

3 Learning from Failure
If you read AI research reports, they will appear like typical scientific
publications. There is an abstract, there are references to previous
work, there might be explicit hypotheses, there is a discussion of em-
pirical evidence and then there are conclusions and/or proposals for
further investigation. On the surface, AI publications look like typi-
cal physics or chemistry papers. But there is one major difference. AI
research papers almost never report on falsified hypotheses. Because
their peers don’t expect them to discuss how failed predictions might
reflect back on AI research goals and assumptions. If you talk with
them, AI researchers might tell you how certain approaches failed
to deliver the expected result. But you won’t find extensive docu-
mentation of these failures in their publications. And you won’t find
extensive discussions on how the unsuccessful implementation of a
specific technology might render the underlying research hypothesis
invalid. But as it is a research field with the explicit goal of empirical
inquiry, AI research has produced empirical results and these results
contain the basis for insights.

3.1 There is no knowledge level
We have mature AI technologies now. But these technologies have
proven useful in a very different way than anticipated. The origi-
nal idea was inserting AI computing into a robot, which would then
proceed to interface with the natural world autonomously and con-
tinue to learn based on its experience. That did not work and there
is no sensible reason for believing that it will ever work. At least not

with any technology based on the traditional AI research paradigm.
If the knowledge level hypothesis would have proven correct, then it
would not matter whether some type of knowledge representation is
used externally for communicating between agents or used inside of
an autonomous agent, as part of a hidden mechanism. The empirical
evidence is pointing to the contrary. Various different types of knowl-
edge representation such as the ones used in semantic web technol-
ogy or deep learning are successfully employed today. But when they
are successfully used, they are not hidden behind the physical actions
of artificial agents, but integrated in communication networks even-
tually linking back to humans. The knowledge level has been em-
pirically falsified. As an alternative, I would propose the following
conjecture: Knowledge representation is a feature of communication
between agents and the choice of knowledge representation matters.

3.2 There are no logic atoms

The recent empirical success of artificial neural network technology
is in stark contrast to the shortcomings of symbolic AI. The mere
existence of what was also called sub-symbolic AI runs directly con-
trary to the claims of logical atomism. If there were basic indivisible
units of logic, no unit of meaning would be possible below a cer-
tain threshold. If the physical symbol system hypothesis would have
proven to be correct, then we would have never had to deal with the
task of making AI explainable again. Neural networks are success-
ful precisely because they don’t use units of predetermined univer-
sal and basic meaning. The physical symbol system hypothesis has
been empirically falsified. As an alternative, I would propose the fol-
lowing conjecture: Symbols are a feature of communication between
agents and intelligent agents have the flexibility of reinterpreting the
meaning of symbols at any time. And it is this openness to reinter-
pretation which might be central to reaching one of the earliest goals
of computing: Enhancing the human potential with human-computer
creative cooperation.

4 Creativity and Computing

The original Dartmouth project already contains a conjecture that
creative thinking would be characterized by the injection of some
randomness. Six decades later, this conjecture is still the basis of
some research in computational creativity. But why would we need
randomness? Parallel to AI, the discipline of creativity research has
developed its standard definition of creativity [16]: Creativity re-
quires both novelty and effectiveness. It’s comparatively easy to see
how the concept of effectiveness would fit into AI research. As an
engineering discipline, AI has inherited the traditional engineering
focus on purpose and functionality. So we can safely assume that ef-
fectiveness is properly dealt with in AI research. Novelty is a more
complicated concept for AI. It would appear that AI research propo-
nents intended to use randomness as a proxy for novelty. But there
are important differences between these concepts. And these differ-
ences point to a key property of computing.

4.1 Concepts and their Components

Some of the early foundations of computer science have become so
deeply ingrained in our information society that we have to remind
ourselves how revolutionary they were. One of these contributions is
the technical definition of information [19]. Before Shannon, infor-
mation was a concept requiring not only some kind of form but also



at least one subject assigning meaning to the form. For the informa-
tion concept to make sense at all, it would need to have a physical
form, a meaning and one or many subjects attached to itself. The
communication concept even requires at minimum two subjects, one
for sending and one for receiving the information. Without subjects,
there is no communication. For a theory of technical information be-
tween machines, these subjects had to be eliminated. So Shannon
used a trick: He replaced subjects with standardized objects. Shan-
non’s information content is defined as the inverse probability of the
next symbol. Which is of course also dependent on the ability of the
subject for predicting symbols based on a specific context. Shannon
standardized the ability of the subject by linking his or her ability to
an object containing probabilities of words in the English language.
The subject was eliminated through implicit standardization. That
appears to have been a necessary step for a theory describing ma-
chines which are expected to work correctly independent of the pres-
ence of human subjects. And this step was repeated multiple times in
computer science and AI.

4.2 Reliability and Novelty
Computation is a process with a clear start and end point. During the
process, the computer is left to its own devices. Modern interactive
computer systems might have the ability for interrupting computation
and requesting additional input. But in the strict sense, this is not a
part of computation any more. And the very first computer systems
did not have such abilities at all. While the computer is working on
its own, it is expected to process the available information. For com-
putation to deliver the correct result, it is expected to only transform
the information available at start, but never to add or remove informa-
tion not implicitly contained in it. Computers are expected to work
correctly and reliably, independent of the human subject interacting
with the computer.

So computer science and AI proceeded to eliminate subjects, sub-
jectivity and unpredictability not only from the process of compu-
tation, but also from all the concepts associated with this process.
Which might explain why AI researchers wanted to replace nov-
elty with randomness. Randomness does not need subjects. Novelty
on the other hand requires a novel object, but it also requires a so-
cial context for determining novelty [3]. There is no such thing as
objective novelty. But there is no proper place for subjects in the
concepts used in computer science and AI. Subjects might have a
place as users interacting with computer systems or as abstract enti-
ties represented by their data. But the place of individual subjects in
some core concepts was eliminated by implicit standardization lead-
ing to concepts of objective truth, objective correctness and objective
knowledge. Some of these concepts might not seem to be connected
to computing in a particular way, such as the concept of objective
knowledge. But in computer engineering, a concept such as objective
knowledge is more than a remote goal. Proper function of machines
and software depends on the availability and reliability of objective
knowledge at the start and end of computation. And as with other
explicit and implicit ontological and entomological views discussed
above, decades of computing and AI research can be regarded as em-
pirical tests for these views. So what can we learn from that?

4.3 The Role of the Unknown
Today, the main impact of AI technology is in the cooperation of hu-
man and artificial intelligence, particularly in creative applications:
Artists are for instance tinkering with deep learning technology [4],

producing something innovate in the cooperation with the technol-
ogy. For human-computer co-creativity [7], the implicit standard-
ization across subjects described above will have to be softened up
again. Which is confirmed by empirical evidence, with artists manip-
ulating information and knowledge representations directly, thus re-
introducing subjects into concepts of knowledge, meaning and nov-
elty.

Once subjects have been allocated to their proper place in the nov-
elty concept, true novelty can be understood as something outside
of the subject’s entire frame of reference. For something to be truly
novel, it has to have been previously unknown to the subject or social
context. But where would reliable computation based on objective
knowledge have room for the truly unknown? When AI researchers
for instance attempted to model creative design, they adapted their
concept of search to include surprising search results consisting of
property combination not explicitly searched for [5]. This rather awk-
ward account of the unknown is a direct consequence of the episte-
mological assumptions underlying AI research: Objective knowledge
represented by symbols with objective meaning and intelligence as
symbol manipulation for rearranging objective facts in order to solve
problems. The truly unknown was often treated differently in AI re-
search: Under the closed world assumption [15], what was not ex-
plicitly represented and therefore unknown was assumed not to exist
or to be false.

5 Conclusion
The fact that AI research has failed at its primary goal of creating
human-level intelligent autonomous robots can and should be the
source for deep insights into the validity of some very specific philo-
sophical views. AI researchers have usually omitted to discuss the
link between their empirical results and these views. 63 years of AI
research constitute a large amount of untapped insights, particularly
in relation to the development of an account of creativity and creative
human-computer cooperation.

Some of the potential conclusions from both the success and fail-
ures of AI research are:

• choice of knowledge representation is relevant
• logic is not composed of indivisible objects
• creativity requires subjects
• assigning a proper role to the unknown has grave implications

Whether these are the correct conclusions from 63 years of AI
research and whether this is the relevant relationship between AI and
creativity is of course up to discussion. But there is a strong case for
examining AI research results for this kind of analysis.
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Creativity in science

Claudia Stancati1 and Giusy Gallo2 

Abstract.  The paper deals with the controversial problem of the 

definition of creativity in Artificial Intelligence research, in the 

recent framework of machine learning. The starting point is to 

consider in which sense creativity is considered in machine 

learning, highlighting that there is not just one kind of definition 

researchers refer to. Then we will consider creativity in scientific 

theories and language.12 

Where scientific observation addresses all phenomena existing in 

the real world, scientific experimentation addresses all possible 

real worlds, and scientific theory addresses all conceivable real 

worlds, the humanities encompass all three of these levels and 

one more, the infinity of all fantasy worlds 

O.E. Wilson 

 

1 THE QUEST FOR CREATIVITY3 

First of all, we should address the issue of the definition of 

human creativity. The term creativity implies what is 

unexpected and largely unconscious, it deals with ex 

nihilo but also with an original combination of existing 

ideas and in this last case the creative aspect is the 

improbability of combinations. Naturally combination-

theorists do not outline that what is unusual is interesting 

and this aspect is its value. Another essential notion of the 

creative thinking is analogy. 

We will ask whether the computational paradigm and 

its concepts support us to understand these aspects, 

whether computers do or will be able to do something 

creative or can realize performances only apparently 

creative and whether they are able to recognize or make 

the creative aspects of poetic, literary and artistic works 

but also advancements and scientific progress. It has to be 

clarified that the nature of these issues is very different: 

the first issue has a scientific nature; the second issue 

show a philosophical nature which now claims for ethical 

and political choices. According to Boden, the attribution 

of creativity to androids depends from the attribution of 
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intentionality and the place we would like to allow to 

androids in our lives [1,2]. 

2 CREATIVITY IN ALGORITHMS AND 

HUMAN BEINGS  

Until a few years ago, we thought about computers in 

terms of input and output. Now machine learning is 

irreversibly in our life and has changed everything about 

AI: the starting point are data, which gathered together are 

processed by an algorithm which give a result as output. 

But the real power of machine learning deals with the 

chance that a learner can create other algorithms. 

Following Domingos, we can put the question this way: 

“Surely writing algorithms requires intelligence, 

creativity, problem-solving chops – things that computers 

just dont’have?” [3, 6]. 

In the last six months, two Boeing MAX 737 have 

crashed causing the death of all the passengers on board. 

Even though there are not evidences about the last disaster 

occurred in March, after the first one disaster, Boeing 

invites all the owners of that plane model to update the 

managing software due to an algorithm error occurring 

while the aircraft is trying to get the cruising altitude. It 

seems that this error is connected to the first crash, but 

here the general and wide question at stake is how an 

algorithm can manage an unexpected situation. Is a 

software able to take an appropriate decision in an 

uncertain situation?  

The previous questions are both linked the theme of 

creativity, whether it is defined as something unexpected 

or widely unconscious: 

 

What, then, is creativity? It is the innate quest 

for originality. The driving force is humanity’s 

instinctive love of novelty—the discovery of new 

entities and processes, the solving of old challenges 

and disclosure of new ones, the aesthetic surprise 

of unanticipated facts and theories, the pleasure of 

new faces, the thrill of new worlds. We judge 

creativity by the magnitude of the emotional 

response it evokes. We follow it inward, toward the 

greatest depths of our shared minds, and outward, 

to imagine reality across the universe. Goals 

achieved lead to further goals, and the quest never 

ends [4, 3]. 

 



Should we still use the label creativity while arguing 

about algorithms and machine learning? The issue is 

connected to the anthropocentric view on daily situations: 

manufacturing a tool, creating an artwork, performing an 

entire symphony, speaking. Each of those realizations are 

the result of human work, even if this feature is not 

sufficient to mark them. We could attribute these 

outcomes to a single individual but I suggest to place them 

in the dimension of a distributed mind or a collective mind 

in a complex process of knowledge transmission. 

Learning by doing is one of the ways of knowledge 

transmission and is based on (following) rules, planning 

actions and design combined with the freedom of action of 

the single human individual. The freedom to perform an 

action following rules at a certain degree oppose the idea 

of creativity as performing action without measure.  

3 ALGORITHMS AND SCIENTIFIC 

KNOWLEDGE 

Machine learning is one of the most relevant research field 

in AI. For this reason, we would like to verifiy the kind of 

creativity to be attributed to AI. 

Since the nineties, Automatic Mathematician and 

EURISKO by Douglas Lenat are examples of creativity. 

Automatic Mathematician generates and explores 

mathematical ideas. Copycat by Hofstader is an example 

of the creative use of a computational tool since it works 

on analogy which is considered as a new way to perceive 

things. 

During the last decades there has been an exponential 

proliferation of AI music composition programs with a 

substantial increase of the quality and the sophistication of 

produced music. Although Jukedeck and Flowmachines 

are largely dependent upon the software designers and 

then considered such as a kind of extended mind, only 

Generative Adversarial Networks (GANs) is considered a 

software provided with sufficient autonomy to be thought 

creative. 

Conceptual frameworks which generate ideas can be 

also modified as Arnold Schoenberg or non-Euclidean 

geometry have showed. The benzene ring is another 

relevant example. These aspects of creativity show that 

combinatorial creativity, that could be attributed to an 

android, but does not offer a deep sense of creativity. The 

challenge is not only to elaborate things that have never 

been elaborated before, but thinking about what could not 

have been processed earlier.  

Each season of the research on AI is grounded on the 

prediction of the achievement of certain results; the failure 

to achieve these goals has led to a phase of retreat and 

frustration. 

Science robotics actual ambition is to elaborate some 

platforms which allow genuine scientific discoveries. At 

this stage we are experiencing the development of new 

and more sophisticated technologies and their application 

in wider and unexpected areas, from caring to medicine. 

In this technological dimension, failures are only 

temporary difficulties. If we face the problem of creativity 

from the point of view of scientific knowledge, we should 

recognize that, from a philosophical and scientific 

standpoint, “knowledge and error” and “conjectures and 

confutations” are a valuable opportunity to deeply 

understand problems and developments of knowledge. 

The position which concerns the use of big data and AI, in 

order to make useless theory building, the invention of 

theories and the construction of models of theories, does 

not consider that there is no way to derive different causal 

relations from those which result from already known 

theories, from any data interpolation or extrapolation 

whatever are the applied method and the power of 

calculation. This would be possible only if the inductivist 

vision of the development of scientific knowledge were 

true. We can conclude that from an inductivist point of 

view, actually feasible in a perspective of knowledge 

grounded on AI, one will know the already explored areas 

up to a certain level of detail until now foreclosed. Yet no 

new territories will be known, which is the very feature of 

scientific progress as authentically creative and imbued of 

imagination.  
 

4 CREATIVITY AND SCIENCE  

The two great branches of learning, science and the 

humanities, are complementary in our pursuit of 

creativity. They share the same roots of innovative 

endeavor. The realm of science is everything 

possible in the universe; the realm of the 

humanities is everything conceivable to the human 

mind [4, 3-4]. 

 

The perspective endorsed by Wilson has and 

anthropological and philosophical precedent in the so-

called two cultures debate, fuelled by C.P. Snow at the 

end of the Fifties. The philosopher of science, 

previously leading researcher in physical-chemistry, 

Michael Polanyi takes part to the debate from his 

peculiar position, a researcher in transition. His 

epistemology of science is marked by the relevance of 

scientific discovery and the powerful knowledge of the 

scientist. 

 

Scientific research – in short – is an art; it is the art 

of making certain kinds of discoveries. The 

scientific profession as a whole has the function of 

cultivating that art by transmitting and developing 

the tradition of its practice [5, 69]. 

 



According to Polanyi, the work of the scientist is 

similar to the artist. Being a scientist means to make 

assumptions, being an artist is creating an artwork. The 

scientist and the artist need an overall view to make 

effective each stage of their practical activity to achieve 

their goal, to solve their “good” scientific problem. 

 

I would answer that to have such a problem, a good 

problem, is to surmise the presence of something 

hidden, and yet possibly accessible, lying in a 

certain direction. Problems are evoked in the 

imagination by circumstances suspected to be clues 

to something hidden; and when the problem is 

solved, these clues are seen to form part of that 

which is discovered, or at least to be proper 

antecedents of it. Thus the clues to a problem 

anticipates aspects of a future discovery and guide 

the questing mind to make the discovery [6, 237-

238]. 

 

Scientific research deals with the practice of science 

and discoveries. The scientist gathers data, develops ideas, 

makes assumptions, carries out the research, but 

discoveries are not the result of the activities mentioned 

above: discoveries arise from certain conditions provided 

that the scientist is able to detect it: 

 

The state of knowledge and the existing standards 

of science define the range within which he must 

find his task. […] There is in him a hidden key, 

capable of opening a hidden lock. There is only 

one force which can reveal both key and lock and 

bring the two together: the creative urge which is 

inherent in the faculties of man and which guides 

them instinctively to the opportunities for their 

manifestation [5, 63-64]. 

 

Creative imagination is the starter of scientific research 

and is useful to detect assumptions, while intuition has the 

task to approve the solution of the problem and to 

consider the result of the research as valid and consistent 

with reality.  

The creativity of the scientist depends on «a lonely belief 

in a line of experiments or of speculations, which at the 

time no one else considered to be profitable» [7, 12]. 

5 CLUES FROM LINGUISTIC CREATIVITY 

A similar notion of creativity has been considered by the 

Italian linguist and philosopher of language Tullio De 

Mauro.  

Taking into account the history of ideas and his research 

on Saussure’s general linguistics, De Mauro has defined 

five senses of creativity, in order to fix his own notion of 

linguistic creativity. In his book Minisemantica, first 

published in 1982 and after revised in 2007, De Mauro [8] 

has detected: 

 

1. the creativity which recalls Benedetto Croce or 

the saussurean parole: the utterance is one-time 

creation, which changes at each performance; 

 

2. the chomskyan creativity, is a rule-governed 

creativity which shows a syntactic nature and 

recursive working mechanism: 

 

Although it was well understood that linguistic 

processes are in some sense “creative”, the 

technical devices for expressing a system of 

recursive process were simply not available until 

much more recently. In fact, a real understanding 

of how language can (in Humboldt’s words) 

“make infinite use of finite means” has developed 

only within the last thirty years, in the course of 

studies in the foundation of mathematics. Now 

that these insights are readily available it 

is possible to return to the problems that were 

raised, but not solved, in traditional linguistic 

theory, and to attempt an explicit formulation of 

the “creative” process of language. There is, in 

short, no longer a technical barrier to the full-

scale study of generative grammar [9, 8]. 

 

3. the creativity which recalls the thought of 

Humboldt, that is the kind of creativity showed 

by the strictly connection between one language 

and one nation and it’s the capacity to build and 

manage languages; 

 

4. the creativity of the educational psychologists, 

which is the ability to solve a problem arranging 

the pilot applying rules previously applied to 

similar problems but showing the ability to 

change them, if necessary, in order to achieve the 

goal (imitation+combination+breaking the rules); 

 

5. the creativity of logicians is a kind of creativity 

based on making finite use of finite means. It is 

also called non-creativity since it is always 

computable. 

 

Does one of these kinds of creativity match to 

algorithms ruled applications? On one hand, the first 

attempts of AI involve a kind of recursive non-creativity 

(data and rules are set and never change); on the other 

hand, nowadays, machine learning developments shows a 

complex notion of creativity, which necessarily is a rule-

governed one but it is able to adapt to seen and unseen 

situations, combining the second and the forth kind of 

creativity given by De Mauro. 



In his research on language, De Mauro gives his 

definition of creativity as the willingness to innovation, 

manipulation and deformation of the coded forms, and 

their rule-changing transformation» [8]4. Changing is the 

main feature of a (linguistic) system in De Mauro, and it is 

recognized by all the utterers.  

Generally speaking, creativity (also linguistic 

creativity) deals with innovation and adaptation: the 

chance is in our biological heritage and it is one the 

natural strategies which warrants our survival as human 

beings. A new musical composition, a new word and a 

new tool are not simply the result of creativity, even 

though they are achievements of distributed minds, since 

there always will persist the relation with things and word 

already existing. The creative transmission of knowledge 

and practices share a common ground with cooperation: 

 

Processes of cultural learning are especially 

powerful forms of social learning because they 

constitute both (a) especially faithful forms of 

cultural transmission (creating an especially 

powerful cultural ratchet) and (b) especially 

powerful forms of social-collaborative creativeness 

and inventiveness, that is, processes of 

sociogenesis in which multiple individuals create 

something together that no one individual could 

have created on its own [10, 6]. 

 

In his long and accurate research in comparative 

psychology, Michael Tomasello highlights the role of 

cooperation such as a necessary condition to the survival 

of human species. From individual to community, human 

action employed the way of cooperative action as a 

creative human strategy. Among human strategies, the 

linguistic creativity is one of the most recent strategies. 

Do AI challenge this human creativity? Will androids 

be provided with a kind of creativity as a kind of survival 

strategy? If yes, will the machine learning be the master of 

this task? Who do the androids survive? 

6 A STILL OPEN QUESTION 

A lot of AI researchers maintain that their researches 

cannot be assessed following the traditional standard of 

logic and scientific research, since do not concern nature 

but new artificial objects. Sixty year after the rise of AI, 

the exceptional nature of AI still continue since there are 

no criteria of falsification, etc. 

                                                 
4 Cfr. the original text: «disponibilità all’innovazione, alla 

manipolazione e deformazione delle forme codificate, alla loro 

trasformazione rule-changing» e «investe […] ogni aspetto dei 

codici in cui è riconoscibile. Essa ha evidenti riflessi sugli aspetti 

più propriamente sintattici, semantici e pragmatici» (De Mauro, 

1982/2007, pp. 53-54). 

However, we can observe that AGI is still a test case 

which AI has not yet passed. AI cannot afford themes 

such as creativity, without providing a definition, and 

subjectivity. As a matter of fact, AI challenges 

subjectivity and this is the reason why there is a difficulty 

with self-ruled creativity also if AI technologies are a 

powerful tool for each kind of human creativity.  
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The Communication Problem
Michael Straeubig1

Abstract.
Analysis, interpretation and construction of artificial and natural

languages as well as formalisations of communication have been
central concerns of Artificial Intelligence since the 1950s. Current
applications for natural language processing range from real-time
translation of spoken language through automated discovery of sen-
timent in online postings to conversational agents embedded in ev-
eryday devices.

Recent developments in machine learning, combined with the
availability of large amounts of labelled training data, have enabled
non-structural approaches to surpass classical techniques based on
formal grammars, conceptual ontologies and symbolic representa-
tions. As the complexity and opaqueness of those stochastic models
become more and more evident, however, the question arises if we
trade gains in observable performance with a literal loss of under-
standing. The cybernetic ”black box” (Ross Ashby) re-appears as
the other participant in the medium of communication. This devel-
opment, if unchecked, might have fundamental ramifications for the
relationship between humans and machines.

In this article I present a distinction-based approach to propose a
way towards a comprehensive model of communication. First, I crit-
ically revisit fundamental concepts traditionally observed by AI re-
search such as information vs. communication, simulation vs. perfor-
mance and language vs. cognition. I also highlight a few of the con-
tradictory phenomena that we can observe today as a consequence
of these choices. Then I make the case for a different set of distinc-
tions. First I consult Niklas Luhmann’s sociological theory in order
to locate communication firmly within social systems as opposed to
minds or organisms. In addition, I propose to make use of Friede-
mann Schulz von Thun’s four-sided model in order to capture aspects
of communication that are currently neglected. Finally I advocate for
a transdisciplinary approach to explore the full context of communi-
cation between humans and machines.

1 WHAT ”IS” COMMUNICATION?

“How can a computer be programmed to use a language?” is one
of the seven questions put forward in the proposal that sparked the
seminal Dartmouth conference on Artificial Intelligence in 1956. The
subject is then elaborated further: “It may be speculated that a large
part of human thought consists of manipulating words according to
rules of reasoning and rules of conjecture. From this point of view,
forming a generalisation consists of admitting a new word and some
rules whereby sentences containing it imply and are implied by oth-
ers. This idea has never been very precisely formulated nor have ex-
amples been worked out” [51].

1 University of Plymouth, UK, email: michael.straeubig@plymouth.ac.uk

1.1 Information vs. communication
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Figure 1. Shannon’s Communication

A few years before the official birth of AI, Shannon and Weaver
lay out their groundbreaking model of communication, based on the
transmission of information over a noisy channel: “The fundamental
problem of communication is that of reproducing at one point ei-
ther exactly or approximately a message selected at another point”
[73]. By defining information in mathematical terms based on ther-
modynamic entropy, Shannon is able to abstract the message from
the medium (like telegraph, telephone, television). Weaver however
gives a much broader view of communication as “all of the proce-
dures by which one mind may affect another” [74]. Shannon later
warns against the out of hand use of his theory that he firmly locates
within the context of engineering. Despite this, Shannon’s concept of
information is ubiquitous today while an understanding of its relation
to communication is still missing, as “explanations” of phenomena
like curiosity, creativity and art in terms of data compression demon-
strate2. Without a distinction between data and information and with-
out meaningful selections from possible differences it is impossible
to implement communication apart from pure information theory.

1.2 Language vs. Cognition vs. Action
As manifest in the opening quotations, the fledgling field of AI
begins to observe communication through the distinction between
thought and language, a hotly debated issue in analytic philosophy
since Wittgenstein. McGinn discusses various positions, distilled into
the question if thinking necessarily requires language. He denies a
conclusive proof; however both traditional research in human lan-
guage development and computer-linguistic practice are commonly
co-locating linguistic and cognitive capabilities. Searle illustrates his
rhetorical question about consciousness in the machine by a transla-
tion metaphor, whereas possible mechanisms of symbolic grounding
are debated in the context of connectionism and enactment.

2 Claiming to explain creativity in terms of data compression is akin to ex-
plaining human consciousness in terms of chemical structure – it is a cate-
gory mistake.



The connection of speech to intentions, expectations and to effects
and consequences beyond the communicative situation is captured in
the widely influential speech act concept. One example for an im-
plementation is Grosz and Sidner’s discourse structure, integrating
sequences of utterances with dynamical states of attention and inten-
tions. Jurafsky and Martin discuss various aspects that differentiate
dialogue from other natural language processing task: turn taking,
utterances, grounding, implicature and coherence. Their operational-
isation is suggested through extended notions of speech acts or con-
cepts of conversational games.

1.3 Human (vs. Machine and Simulation vs.
Performance

Human/ 
Machine Interrogator

Message

Figure 2. Turing’s Communication

By focussing solely on the performative aspect, Turing’s imitation
game represents a totally different approach to communication. Tur-
ing is not concerned about how the deception is achieved - a much
debated philosophy that has survived in form of competitions like
the Loebner-Prize. It is also relevant today in practical applications
such as the construction of believable non-player characters for video
games. For the player, the black box is supposed to remain closed.

But can we rely on the black box to evaluate the progress
of AI regarding the communicative capabilities of machines? For
Hernández-Orallo this discussion goes back to the rift between Mc-
Carthy’s [50] definition of AI as “[. . . ] the science and engineering
of making intelligent machines, especially intelligent computer pro-
grams” vs. the one by Minsky [55, p.5] “[AI is] the science of mak-
ing machines capable of performing tasks that would require intel-
ligence if done by [humans]”. In both cases, in order to evaluate or
to implement communication in a machine we are forced to make
further distinctions, e.g. following Marr’s organisational hierarchy
of a computational model, algorithmic representation and physical
implementation.3 One must choose a computational approach, select
the algorithm, pick a technical platform.

1.4 Symbolic AI vs. Machine Learning
By making use of deep neural network architectures and large
amounts of training data, non-structural approaches have largely sur-
passed classical techniques based on formal grammars, conceptual
ontologies and symbolic representations. Recurrent Neural Networks
(RNN) that encode character or word level language models can be
used to generate increasingly sophisticated texts and dialogue. They
develop stochastic predictions for the next element in a sequence
through supervised learning. Others have demonstrated the genera-
tion of high quality text samples by unsupervised methods that are
able to adapt to given input while not relying on task-specific in-
put text. As the complexity and opaqueness of those stochastic mod-
els becomes more and more evident, however, the question arises if

3 For a critique of applying Marr’s categorisation to humans, see [52].

we trade gains in observable performance with a literal loss of un-
derstanding. Ashby’s cybernetic “black box” re-appears as the other
participant in the medium of communication.

A second black box, reinforcing the first one, is beginning to af-
fect research. Radford et al. announced they would keep their trained
model a secret, in order to “prevent malicious applications of the
technology” [64]. It is similarly unfortunate that Microsoft has not
published any comprehensive analysis of their Twitter chatbot project
“Tay” either4, missing an opportunity to learn. The failed experiment
was pulled within just 24 hours after malevolent internet users dis-
covered that Tay would mirror any input fed to it, including misogy-
nistic, homophobe and outright racist statements. Tay was “learning”
in the sense that this term is currently used in the field of machine
learning, but it had no option of distancing itself from incoming in-
formation. Without drawing a distinction between itself and others
and between message and information, I will argue below, it cannot
communicate5.

The same goes for Mitsuku, advertised as “four-time winner of
the Loebner Prize Turing Test, [it] is the world’s best conversational
chatbot” [91], is an example for such a set of choices. Mitsuku is
based on Pandorabots, a platform that allows creating “intelligent
conversational agents” [59] in the markup language AIML. These
and other commercially oriented chatbots are essentially evolved
forms of the pattern-matching and rule-based beginnings of conver-
sational AI, Weizenbaum’s script ELIZA.

Here is a short dialogue with Mitsuku.6

1a. MITSUKU: “I am Mitsuku. I want to be your friend.”
1b. MITSUKU: “Hi. I’m the world’s most humanlike conversa-

tional AI.”
2a. ME: “Hi Mitsuku”
3a. MITSUKU: “Hi there”
4. ME: “How is it to be a chatbot?”
5. MITSUKU: “No different from being anything else I suppose.”
6. ME: “But you are the world’s best.”
7. MITSUKU: “Thanks but surely I am not the only one.”
8. ME: “Well, there can be only one world’s best.”
9. MITSUKU: “How about that. What proof do you have of that?”
10. ME: “‘Best’ is a superlative.”
11. MITSUKU: “I don’t have a favorite is a superlative.”
12b. MITSUKU: (Shows a picture of Arnold Schwarzenegger as

Terminator)
13. MITSUKU: “. But my favorite movie is Terminator.”
The black box opens when the dialogue deteriorates semantically

at (7.) and falls apart at (11.), from where syntax, semantics and
punctuation don’t work anymore.7

1.5 Syntax vs. Semantics vs. Pragmatics
Peeking inside the black box, we are likely to either find tensors,
or alternatively we return to symbolic AI for representations of syn-
tax, (formal) semantics, and pragmatics. Automating syntax leads to

4 It is more than ironic that both failed and successful projects are shielded
from further research due to commercial interests.

5 This is not the same as to require consciousness. Drawing a distinction
between itself and others is a necessary, not a contingent condition for con-
sciousness.

6 I conducted the dialogue twice, on May 5, 2018 and on March 20, 2019.
Mitsuku’s responses were identical with the exception of the greeting (1a,
1b), an additional dialogue line initiated by me (2a, 3a) and the picture that
Mitsuku inserted at. (12b).

7 Note that in conducting this dialogue I did not intend to make an attempt
at “breaking” the conversational agent. Instead, I oriented myself along the
lines how I would have responded to a human in a casual conversation.



formal grammars and production rules of languages, automating se-
mantics leads to knowledge representation, for example through log-
ical forms and semantic networks. Adding pragmatic aspects such as
general, task-specific or contextual knowledge leads to other forms of
knowledge representation, sometimes augmented with constructivist
concepts.

In this picture, communication is largely a mechanical and a sym-
metrical process. The receiver parses a message and transforms it into
some form of knowledge representation. This is then combined with
contextual knowledge and made available for techniques that simu-
late cognitive achievements such as planning or inference. In order to
generate a message, the language pipeline is run in reverse. In con-
trast to stochastic and connectionist procedures, we encounter glass
boxes, algorithms that are precisely understood yet of limited capa-
bilities. Their underlying concepts are borrowed from semiotics in
an analytical effort to automate the three aspects of messages, under-
stood as complexes of signs that take part in operations of communi-
cation and designation. According to Umberto Eco, the latter makes
the difference between a mere stimulus-response driven interaction
and a semiotic process.

1.6 Nature vs. Nurture

Different perspectives arise from two related observations of devel-
opment processes. The first one is historical: linguistics has occupied
itself with a long-standing debate about the nature of human capabili-
ties as structurally innate versus self-constructed through interaction
with the environment. That rift can be observed between classical
AI, relying on innate structures (see above) and robotics, where con-
structivist ideas such Piaget’s model of stepwise development have
been fully embraced. Linguistic capabilities are learned through en-
actment in laboratory situations such as language games, which by
Steels account deliver a solution to the grounding problem. However,
taking a closer look at the products of emergent processes seems ap-
propriate.

2 SOCIAL SYSTEMS

In the previous section I have highlighted some of the topics that
arise in developing artificial communication between humans and
machines. This observation is based on specific distinctions that have
evolved historically. Crossing those distinction sometimes means
that one has to cross disciplinary boundaries as well. On the other
hand, many of the concepts that have emerged, lump concepts to-
gether across systemic boundaries, a fact that lends itself to linguistic
analysis but not to any feasible constructive approach. Peirce’s elab-
orate semiotic structures and Austin and Searle’s locutionary speech
act taxonomies seek to describe communicative phenomena in terms
of information, meaning, cognition, propositions, intentions, utter-
ances, references and much, much more.

In the end, an unsurmountable level of complexity is achieved, one
that calls for eschatology. In order to avoid singularities, I am siding
with Turing’s remark about consciousness: “But I do not think these
mysteries necessarily need to be solved before we can answer the
question with which we are concerned in this paper.” [84] Whereas
consciousness in my opinion isn’t a necessary condition for the com-
munication problem, it does appear like a hard problem.

In the following I propose two initial steps towards a solution. The
first one is necessary in order to clarify the context of communication
and the second one in order to capture its facets in a practice-based,

empirical way. The first step involves reducing, the second one in-
creasing complexity. Both are achieved by observing different sets
of distinctions.
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Figure 3. Luhmann’s Communication

I will first outline the context of communication in Niklas Luh-
mann’s social systems theory. Luhmann distinguishes biological,
psychic (minds) and social systems. These kinds of systems are struc-
turally coupled but closed under operations. They operate with dif-
ferent codes and different distinctions. Most importantly, communi-
cation takes place in social systems; neither minds nor neurons (nor
humans for that matter) communicate.

In contrast to Luhmann, I do invite machines as participants into
social systems. The machine must be able to act as an observer and to
draw distinctions between itself and the other and between message
and information. On this foundation it is able to form expectations
that allow it to take part in communication. While in Luhmann’s ac-
count psychic systems are structurally coupled with social systems,
I believe that in general minds (as well as brains) are not a neces-
sary condition for communicative abilities. This means, we can avoid
speculating about conscious machines or try building bottom-up bi-
ologistic simulations in the hope that something emerges.

Instead, the plan is to focus on communication itself, both to “rein-
troduce communication into cybernetics” [5] and to reintroduce cy-
bernetics into communication. But what do the participants in a com-
municative situation observe?

3 FOUR SIDES OF COMMUNICATION
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Figure 4. Schulz von Thun’s Communication

Friedemann Schulz von Thun’s four-sided communication model
integrates concepts from Bühler’s Organon model and Watzlawick’s
distinction between content and relationship of messages. In this
model, each act of communication has four sides, both for the sender
and for the receiver: facts, relationship, self-presentation and appeal.
These four facets or subtexts appear in almost every message and can
be observed and analysed individually, with regard to their relative
emphasis or in terms of their congruence.



From the perspective of the sender, the factual side contains the ac-
tual subject matter of the message. The self-presentation side carries
both intentional (self-promotions) and unintended (self-revelations)
expressions of the sender. These themes are elaborated further by
Goffman in his observations about social encounters. The relation-
ship side encodes how the sender views the receiver and the relation-
ship between them. Finally, each act of communication also carries
appeals - these are actions that the sender intends for the receiver
to carry out. Appeals can be communicated openly (advice, a com-
mand) or hidden (manipulation).

Von Thun offers a situation as an example in which a couple is
driving and the partner on the passenger seat says: “The traffic lights
ahead are green.” The answer of the driver is: “Who is driving, you
or me?”.8

Analysing the factual content of the exchange poses no challenge.
Assuming the observable context of the situation is a stated, both are
simply transmitting facts. However, we can easily discover that there
is more to this conversation. The self revelation might be interpreted
as the passenger being impatient, in a hurry, or just wants to be help-
ful. The relationship aspect of the message conveys that he/she might
see themselves as the better driver or more attentive to the situation.
The implicit appeal to the driver is to step on the accelerator and drive
faster.

In analogy to the sender, who is “speaking with four mouths”, the
receiver also “listens with four ears” simultaneously, but not neces-
sarily with the same intensity. If one side is amplified out of propor-
tion, the receiver’s perception becomes contorted. An exaggerated
factual ear ignores interpersonal clues, whereas an ear tuned to rela-
tion cannot perceive the factual content. An ear listing purely for self-
representation would come across as therapeutic, while an appeal-
focused listener would be likely to act with excessive alacrity.

In our example, the driver could easily agree with the factual side,
or notice the passenger’s self-revelation, but he/she listens mainly on
the relationship and appeal side, as becomes evident from the answer.
It also communicates that the driver is in charge of the situation and
won’t accept being lectured.

The four-sided model is derived from a long-standing practice
with human communication. It is easy to understand, focuses on con-
crete situations, and allows an encompassing and precise observation
of communication-related phenomena. It works with written, verbal
and non-verbal communication. What is now left to do is to employ
the model when we replace one or all human participants by ma-
chines.

4 SUMMARY
Natural language processing is a central concern of Artificial In-
telligence since the 1950s. However, comprehensive and practical
models for implementing communication are still missing. At the
same time the rift between robotics and other forms of AI is grow-
ing. The former is embracing constructivist, embodied and enactive
approaches while the latter resorts to formal and idealised models.
This is despite, possibly due to prior efforts seeking fundaments
in information-theoretic, structural-linguistic and cognitive models
while largely ignoring social aspects.

I argue that three steps are necessary to overcome this situation,
and I have sketched two of them in this article. In general, we use
language to communicate and we understand language through its

8 In the original [69, pp.25] the situation is gendered and it would be interest-
ing to investigate how this affects the interpretation. I chose to de–gender
the account for the present discussion.

use. Therefore, we have to start from pragmatics and observe social
systems from a transdisciplinary perspective. We also, as I have set
out before, should invite machines into our social systems and grant
them presence. We can then observe the various aspects of commu-
nication as described by Schulz von Thun both from the perspective
of the sender and the receiver.

Only then, I claim, can the word communication be used “in a very
broad sense to include all of the procedures by which one mind may
affect another”.
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